tokenization_transfo_xl.py 21.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for Transformer XL model.
17
    Adapted from https://github.com/kimiyoung/transformer-xl.
thomwolf's avatar
thomwolf committed
18
"""
thomwolf's avatar
thomwolf committed
19
20
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
thomwolf's avatar
thomwolf committed
21

22
import glob
thomwolf's avatar
thomwolf committed
23
import logging
thomwolf's avatar
thomwolf committed
24
25
import os
import sys
thomwolf's avatar
thomwolf committed
26
from collections import Counter, OrderedDict
thomwolf's avatar
thomwolf committed
27
from io import open
28
import unicodedata
thomwolf's avatar
thomwolf committed
29
30
31

import torch
import numpy as np
thomwolf's avatar
thomwolf committed
32
33
34

from .file_utils import cached_path

thomwolf's avatar
thomwolf committed
35
36
37
38
39
40
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle


thomwolf's avatar
thomwolf committed
41
42
43
logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
44
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-vocab.bin",
thomwolf's avatar
thomwolf committed
45
}
46
47
48
49
VOCAB_NAME = 'vocab.bin'

PRETRAINED_CORPUS_ARCHIVE_MAP = {
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-corpus.bin",
thomwolf's avatar
thomwolf committed
50
}
51
CORPUS_NAME = 'corpus.bin'
thomwolf's avatar
thomwolf committed
52
53
54
55
56
57
58
59
60

class TransfoXLTokenizer(object):
    """
    Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl
    """
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
        """
        Instantiate a TransfoXLTokenizer.
61
        The TransfoXLTokenizer.
thomwolf's avatar
thomwolf committed
62
63
64
65
        """
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
66
67
68
69
            if os.path.isdir(pretrained_model_name_or_path):
                vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            else:
                vocab_file = pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
70
71
72
        # redirect to the cache, if necessary
        try:
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
73
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
74
75
76
77
78
79
80
81
82
83
84
85
86
            if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download vocabulary.".format(
                        vocab_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
                        pretrained_model_name_or_path,
                        vocab_file))
thomwolf's avatar
thomwolf committed
87
            return None
88
        if resolved_vocab_file == vocab_file:
thomwolf's avatar
thomwolf committed
89
90
91
92
            logger.info("loading vocabulary file {}".format(vocab_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
93

thomwolf's avatar
thomwolf committed
94
        # Instantiate tokenizer.
95
96
97
98
        tokenizer = cls(*inputs, **kwargs)
        vocab_dict = torch.load(resolved_vocab_file)
        for key, value in vocab_dict.items():
            tokenizer.__dict__[key] = value
thomwolf's avatar
thomwolf committed
99
100
        return tokenizer

101
102
    def __init__(self, special=[], min_freq=0, max_size=None, lower_case=False,
                 delimiter=None, vocab_file=None, never_split=("<unk>", "<eos>", "<formula>")):
thomwolf's avatar
thomwolf committed
103
104
105
106
107
108
109
        self.counter = Counter()
        self.special = special
        self.min_freq = min_freq
        self.max_size = max_size
        self.lower_case = lower_case
        self.delimiter = delimiter
        self.vocab_file = vocab_file
110
        self.never_split = never_split
thomwolf's avatar
thomwolf committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    def count_file(self, path, verbose=False, add_eos=False):
        if verbose: print('counting file {} ...'.format(path))
        assert os.path.exists(path)

        sents = []
        with open(path, 'r', encoding='utf-8') as f:
            for idx, line in enumerate(f):
                if verbose and idx > 0 and idx % 500000 == 0:
                    print('    line {}'.format(idx))
                symbols = self.tokenize(line, add_eos=add_eos)
                self.counter.update(symbols)
                sents.append(symbols)

        return sents

    def count_sents(self, sents, verbose=False):
        """
            sents : a list of sentences, each a list of tokenized symbols
        """
        if verbose: print('counting {} sents ...'.format(len(sents)))
        for idx, symbols in enumerate(sents):
            if verbose and idx > 0 and idx % 500000 == 0:
                print('    line {}'.format(idx))
            self.counter.update(symbols)

    def _build_from_file(self, vocab_file):
        self.idx2sym = []
        self.sym2idx = OrderedDict()

        with open(vocab_file, 'r', encoding='utf-8') as f:
            for line in f:
                symb = line.strip().split()[0]
                self.add_symbol(symb)
145
146
147
148
149
150
        if '<UNK>' in self.sym2idx:
            self.unk_idx = self.sym2idx['<UNK>']
        elif '<unk>' in self.sym2idx:
            self.unk_idx = self.sym2idx['<unk>']
        else:
            raise ValueError('No <unkown> token in vocabulary')
thomwolf's avatar
thomwolf committed
151

152
    def save_vocabulary(self, vocab_path):
thomwolf's avatar
thomwolf committed
153
        """Save the tokenizer vocabulary to a directory or file."""
154
        index = 0
thomwolf's avatar
thomwolf committed
155
156
        if os.path.isdir(vocab_path):
            vocab_file = os.path.join(vocab_path, VOCAB_NAME)
157
        torch.save(self.__dict__, vocab_file)
158
        return vocab_file
159

thomwolf's avatar
thomwolf committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def build_vocab(self):
        if self.vocab_file:
            print('building vocab from {}'.format(self.vocab_file))
            self._build_from_file(self.vocab_file)
            print('final vocab size {}'.format(len(self)))
        else:
            print('building vocab with min_freq={}, max_size={}'.format(
                self.min_freq, self.max_size))
            self.idx2sym = []
            self.sym2idx = OrderedDict()

            for sym in self.special:
                self.add_special(sym)

            for sym, cnt in self.counter.most_common(self.max_size):
                if cnt < self.min_freq: break
                self.add_symbol(sym)

            print('final vocab size {} from {} unique tokens'.format(
                len(self), len(self.counter)))

    def encode_file(self, path, ordered=False, verbose=False, add_eos=True,
            add_double_eos=False):
        if verbose: print('encoding file {} ...'.format(path))
        assert os.path.exists(path)
        encoded = []
        with open(path, 'r', encoding='utf-8') as f:
            for idx, line in enumerate(f):
                if verbose and idx > 0 and idx % 500000 == 0:
                    print('    line {}'.format(idx))
                symbols = self.tokenize(line, add_eos=add_eos,
                    add_double_eos=add_double_eos)
                encoded.append(self.convert_to_tensor(symbols))

        if ordered:
            encoded = torch.cat(encoded)

        return encoded

    def encode_sents(self, sents, ordered=False, verbose=False):
        if verbose: print('encoding {} sents ...'.format(len(sents)))
        encoded = []
        for idx, symbols in enumerate(sents):
            if verbose and idx > 0 and idx % 500000 == 0:
                print('    line {}'.format(idx))
            encoded.append(self.convert_to_tensor(symbols))

        if ordered:
            encoded = torch.cat(encoded)

        return encoded

    def add_special(self, sym):
        if sym not in self.sym2idx:
            self.idx2sym.append(sym)
            self.sym2idx[sym] = len(self.idx2sym) - 1
            setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym])

    def add_symbol(self, sym):
        if sym not in self.sym2idx:
            self.idx2sym.append(sym)
            self.sym2idx[sym] = len(self.idx2sym) - 1

    def get_sym(self, idx):
224
        assert 0 <= idx < len(self), 'Index {} out of vocabulary range'.format(idx)
thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231
        return self.idx2sym[idx]

    def get_idx(self, sym):
        if sym in self.sym2idx:
            return self.sym2idx[sym]
        else:
            # print('encounter unk {}'.format(sym))
232
233
234
235
236
237
238
239
240
241
            # assert '<eos>' not in sym
            if hasattr(self, 'unk_idx'):
                return self.sym2idx.get(sym, self.unk_idx)
            # Backward compatibility with pre-trained models
            elif '<unk>' in self.sym2idx:
                return self.sym2idx['<unk>']
            elif '<UNK>' in self.sym2idx:
                return self.sym2idx['<UNK>']
            else:
                raise ValueError('Token not in vocabulary and no <unk> token in vocabulary for replacement')
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

    def convert_ids_to_tokens(self, indices):
        """Converts a sequence of indices in symbols using the vocab."""
        return [self.get_sym(idx) for idx in indices]

    def convert_tokens_to_ids(self, symbols):
        """Converts a sequence of symbols into ids using the vocab."""
        return [self.get_idx(sym) for sym in symbols]

    def convert_to_tensor(self, symbols):
        return torch.LongTensor(self.convert_tokens_to_ids(symbols))

    def decode(self, indices, exclude=None):
        """Converts a sequence of indices in a string."""
        if exclude is None:
            return ' '.join([self.get_sym(idx) for idx in indices])
        else:
            return ' '.join([self.get_sym(idx) for idx in indices if idx not in exclude])

    def __len__(self):
        return len(self.idx2sym)

    def tokenize(self, line, add_eos=False, add_double_eos=False):
        line = line.strip()
266
267
268
        # convert to lower case
        if self.lower_case:
            line = line.lower()
thomwolf's avatar
thomwolf committed
269

270
271
272
273
274
        # empty delimiter '' will evaluate False
        if self.delimiter == '':
            symbols = line
        else:
            symbols = line.split(self.delimiter)
thomwolf's avatar
thomwolf committed
275
276

        if add_double_eos: # lm1b
277
            return ['<S>'] + symbols + ['<S>']
thomwolf's avatar
thomwolf committed
278
        elif add_eos:
279
            return symbols + ['<eos>']
thomwolf's avatar
thomwolf committed
280
        else:
281
            return symbols
thomwolf's avatar
thomwolf committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316


class LMOrderedIterator(object):
    def __init__(self, data, bsz, bptt, device='cpu', ext_len=None):
        """
            data -- LongTensor -- the LongTensor is strictly ordered
        """
        self.bsz = bsz
        self.bptt = bptt
        self.ext_len = ext_len if ext_len is not None else 0

        self.device = device

        # Work out how cleanly we can divide the dataset into bsz parts.
        self.n_step = data.size(0) // bsz

        # Trim off any extra elements that wouldn't cleanly fit (remainders).
        data = data.narrow(0, 0, self.n_step * bsz)

        # Evenly divide the data across the bsz batches.
        self.data = data.view(bsz, -1).t().contiguous().to(device)

        # Number of mini-batches
        self.n_batch = (self.n_step + self.bptt - 1) // self.bptt

    def get_batch(self, i, bptt=None):
        if bptt is None: bptt = self.bptt
        seq_len = min(bptt, self.data.size(0) - 1 - i)

        end_idx = i + seq_len
        beg_idx = max(0, i - self.ext_len)

        data = self.data[beg_idx:end_idx]
        target = self.data[i+1:i+1+seq_len]

317
318
319
320
        data_out = data.transpose(0, 1).contiguous().to(self.device)
        target_out = target.transpose(0, 1).contiguous().to(self.device)

        return data_out, target_out, seq_len
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

    def get_fixlen_iter(self, start=0):
        for i in range(start, self.data.size(0) - 1, self.bptt):
            yield self.get_batch(i)

    def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
        max_len = self.bptt + max_deviation * std
        i = start
        while True:
            bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.
            bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
            data, target, seq_len = self.get_batch(i, bptt)
            i += seq_len
            yield data, target, seq_len
            if i >= self.data.size(0) - 2:
                break

    def __iter__(self):
        return self.get_fixlen_iter()


class LMShuffledIterator(object):
    def __init__(self, data, bsz, bptt, device='cpu', ext_len=None, shuffle=False):
        """
            data -- list[LongTensor] -- there is no order among the LongTensors
        """
        self.data = data

        self.bsz = bsz
        self.bptt = bptt
        self.ext_len = ext_len if ext_len is not None else 0

        self.device = device
        self.shuffle = shuffle

    def get_sent_stream(self):
        # index iterator
        epoch_indices = np.random.permutation(len(self.data)) if self.shuffle \
            else np.array(range(len(self.data)))

        # sentence iterator
        for idx in epoch_indices:
            yield self.data[idx]

    def stream_iterator(self, sent_stream):
        # streams for each data in the batch
        streams = [None] * self.bsz

        data = torch.LongTensor(self.bptt, self.bsz)
        target = torch.LongTensor(self.bptt, self.bsz)

        n_retain = 0

        while True:
            # data   : [n_retain+bptt x bsz]
            # target : [bptt x bsz]
            data[n_retain:].fill_(-1)
            target.fill_(-1)

            valid_batch = True

            for i in range(self.bsz):
                n_filled = 0
                try:
                    while n_filled < self.bptt:
                        if streams[i] is None or len(streams[i]) <= 1:
                            streams[i] = next(sent_stream)
                        # number of new tokens to fill in
                        n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
                        # first n_retain tokens are retained from last batch
                        data[n_retain+n_filled:n_retain+n_filled+n_new, i] = \
                            streams[i][:n_new]
                        target[n_filled:n_filled+n_new, i] = \
                            streams[i][1:n_new+1]
                        streams[i] = streams[i][n_new:]
                        n_filled += n_new
                except StopIteration:
                    valid_batch = False
                    break

            if not valid_batch:
                return

404
405
            data_out = data.transpose(0, 1).contiguous().to(self.device)
            target_out = target.transpose(0, 1).contiguous().to(self.device)
thomwolf's avatar
thomwolf committed
406

407
            yield data_out, target_out, self.bptt
thomwolf's avatar
thomwolf committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

            n_retain = min(data.size(0), self.ext_len)
            if n_retain > 0:
                data[:n_retain] = data[-n_retain:]
            data.resize_(n_retain + self.bptt, data.size(1))

    def __iter__(self):
        # sent_stream is an iterator
        sent_stream = self.get_sent_stream()

        for batch in self.stream_iterator(sent_stream):
            yield batch


class LMMultiFileIterator(LMShuffledIterator):
    def __init__(self, paths, vocab, bsz, bptt, device='cpu', ext_len=None,
        shuffle=False):

        self.paths = paths
        self.vocab = vocab

        self.bsz = bsz
        self.bptt = bptt
        self.ext_len = ext_len if ext_len is not None else 0

        self.device = device
        self.shuffle = shuffle

    def get_sent_stream(self, path):
        sents = self.vocab.encode_file(path, add_double_eos=True)
        if self.shuffle:
            np.random.shuffle(sents)
        sent_stream = iter(sents)

        return sent_stream

    def __iter__(self):
        if self.shuffle:
            np.random.shuffle(self.paths)

        for path in self.paths:
            # sent_stream is an iterator
            sent_stream = self.get_sent_stream(path)
            for batch in self.stream_iterator(sent_stream):
                yield batch


455
456
457
458
459
460
461
462
463
464
465
466
467
468
class TransfoXLCorpus(object):
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
        """
        Instantiate a pre-processed corpus.
        """
        vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        if pretrained_model_name_or_path in PRETRAINED_CORPUS_ARCHIVE_MAP:
            corpus_file = PRETRAINED_CORPUS_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            corpus_file = os.path.join(pretrained_model_name_or_path, CORPUS_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_corpus_file = cached_path(corpus_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
469
        except EnvironmentError:
470
            logger.error(
471
                "Corpus '{}' was not found in corpus list ({}). "
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
                "We assumed '{}' was a path or url but couldn't find files {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path,
                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
                    pretrained_model_name_or_path,
                    corpus_file))
            return None
        if resolved_corpus_file == corpus_file:
            logger.info("loading corpus file {}".format(corpus_file))
        else:
            logger.info("loading corpus file {} from cache at {}".format(
                corpus_file, resolved_corpus_file))

        # Instantiate tokenizer.
        corpus = cls(*inputs, **kwargs)
        corpus_dict = torch.load(resolved_corpus_file)
        for key, value in corpus_dict.items():
            corpus.__dict__[key] = value
        corpus.vocab = vocab
491
492
493
494
495
496
        if corpus.train is not None:
            corpus.train = torch.tensor(corpus.train, dtype=torch.long)
        if corpus.valid is not None:
            corpus.valid = torch.tensor(corpus.valid, dtype=torch.long)
        if corpus.test is not None:
            corpus.test = torch.tensor(corpus.test, dtype=torch.long)
497
498
499
500
501
502
503
504
505
506
        return corpus

    def __init__(self, *args, **kwargs):
        self.vocab = TransfoXLTokenizer(*args, **kwargs)
        self.dataset = None
        self.train = None
        self.valid = None
        self.test = None

    def build_corpus(self, path, dataset):
thomwolf's avatar
thomwolf committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        self.dataset = dataset

        if self.dataset in ['ptb', 'wt2', 'enwik8', 'text8']:
            self.vocab.count_file(os.path.join(path, 'train.txt'))
            self.vocab.count_file(os.path.join(path, 'valid.txt'))
            self.vocab.count_file(os.path.join(path, 'test.txt'))
        elif self.dataset == 'wt103':
            self.vocab.count_file(os.path.join(path, 'train.txt'))
        elif self.dataset == 'lm1b':
            train_path_pattern = os.path.join(
                path, '1-billion-word-language-modeling-benchmark-r13output',
                'training-monolingual.tokenized.shuffled', 'news.en-*')
            train_paths = glob.glob(train_path_pattern)
            # the vocab will load from file when build_vocab() is called

        self.vocab.build_vocab()

        if self.dataset in ['ptb', 'wt2', 'wt103']:
            self.train = self.vocab.encode_file(
                os.path.join(path, 'train.txt'), ordered=True)
            self.valid = self.vocab.encode_file(
                os.path.join(path, 'valid.txt'), ordered=True)
529
            self.test = self.vocab.encode_file(
thomwolf's avatar
thomwolf committed
530
531
532
533
534
535
                os.path.join(path, 'test.txt'), ordered=True)
        elif self.dataset in ['enwik8', 'text8']:
            self.train = self.vocab.encode_file(
                os.path.join(path, 'train.txt'), ordered=True, add_eos=False)
            self.valid = self.vocab.encode_file(
                os.path.join(path, 'valid.txt'), ordered=True, add_eos=False)
536
            self.test = self.vocab.encode_file(
thomwolf's avatar
thomwolf committed
537
538
539
540
541
                os.path.join(path, 'test.txt'), ordered=True, add_eos=False)
        elif self.dataset == 'lm1b':
            self.train = train_paths
            self.valid = self.vocab.encode_file(
                os.path.join(path, 'valid.txt'), ordered=False, add_double_eos=True)
542
            self.test = self.vocab.encode_file(
thomwolf's avatar
thomwolf committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
                os.path.join(path, 'test.txt'), ordered=False, add_double_eos=True)

    def get_iterator(self, split, *args, **kwargs):
        if split == 'train':
            if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
                data_iter = LMOrderedIterator(self.train, *args, **kwargs)
            elif self.dataset == 'lm1b':
                kwargs['shuffle'] = True
                data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
        elif split in ['valid', 'test']:
            data = self.valid if split == 'valid' else self.test
            if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
                data_iter = LMOrderedIterator(data, *args, **kwargs)
            elif self.dataset == 'lm1b':
                data_iter = LMShuffledIterator(data, *args, **kwargs)

        return data_iter


def get_lm_corpus(datadir, dataset):
    fn = os.path.join(datadir, 'cache.pt')
    fn_pickle = os.path.join(datadir, 'cache.pkl')
    if os.path.exists(fn):
        print('Loading cached dataset...')
        corpus = torch.load(fn_pickle)
    elif os.path.exists(fn):
        print('Loading cached dataset from pickle...')
        with open(fn, "rb") as fp:
            corpus = pickle.load(fp)
    else:
        print('Producing dataset {}...'.format(dataset))
        kwargs = {}
        if dataset in ['wt103', 'wt2']:
            kwargs['special'] = ['<eos>']
            kwargs['lower_case'] = False
        elif dataset == 'ptb':
            kwargs['special'] = ['<eos>']
            kwargs['lower_case'] = True
        elif dataset == 'lm1b':
            kwargs['special'] = []
            kwargs['lower_case'] = False
            kwargs['vocab_file'] = os.path.join(datadir, '1b_word_vocab.txt')
        elif dataset in ['enwik8', 'text8']:
            pass

588
        corpus = TransfoXLCorpus(datadir, dataset, **kwargs)
thomwolf's avatar
thomwolf committed
589
590
591
        torch.save(corpus, fn)

    return corpus