test_modeling_tf_pegasus.py 13.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15

Matt's avatar
Matt committed
16
17
from __future__ import annotations

18
19
20
21
import tempfile
import unittest

from transformers import AutoTokenizer, PegasusConfig, is_tf_available
22
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow, tooslow
23
from transformers.utils import cached_property
24

Yih-Dar's avatar
Yih-Dar committed
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
28
29
30
31
32


if is_tf_available():
    import tensorflow as tf

33
    from transformers import TFAutoModelForSeq2SeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
34
35


36
37
@require_tf
class TFPegasusModelTester:
38
    config_cls = PegasusConfig
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
56
        max_position_embeddings=40,
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_pegasus_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFPegasusModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
113
        head_mask = inputs_dict["head_mask"]
114
115
116
        self.batch_size = 1

        # first forward pass
117
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_pegasus_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
149
150
    head_mask=None,
    decoder_head_mask=None,
151
    cross_attn_head_mask=None,
152
153
154
155
156
157
158
159
160
161
162
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
163
164
165
166
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
167
168
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
169
170
171
172
173
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
174
175
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
176
        "cross_attn_head_mask": cross_attn_head_mask,
177
    }
178
179
180


@require_tf
181
class TFPegasusModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
182
    all_model_classes = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
183
    all_generative_model_classes = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
184
185
186
187
188
189
    pipeline_model_mapping = (
        {
            "conversational": TFPegasusForConditionalGeneration,
            "feature-extraction": TFPegasusModel,
            "summarization": TFPegasusForConditionalGeneration,
            "text2text-generation": TFPegasusForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
190
            "translation": TFPegasusForConditionalGeneration,
191
192
193
194
        }
        if is_tf_available()
        else {}
    )
195
196
    is_encoder_decoder = True
    test_pruning = False
197
    test_onnx = False
198
199

    def setUp(self):
200
        self.model_tester = TFPegasusModelTester(self)
201
202
203
204
205
        self.config_tester = ConfigTester(self, config_class=PegasusConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

206
207
208
    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        model_class = self.all_generative_model_classes[0]
        input_ids = {
            "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
            "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
        }

        # Prepare our model
        model = model_class(config)
        model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
        # Let's load it from the disk to be sure we can use pretrained weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            model = model_class.from_pretrained(tmpdirname)

        outputs_dict = model(input_ids)
        hidden_states = outputs_dict[0]

        # Add a dense layer on top to test integration with other keras modules
        outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

        # Compile extended model
        extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
        extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

241
    @tooslow
Julien Plu's avatar
Julien Plu committed
242
243
244
    def test_saved_model_creation(self):
        pass

245

246
247
@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
248
@require_tf
249
class TFPegasusIntegrationTests(unittest.TestCase):
250
251
252
253
    src_text = [
        """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
        """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning 'Oh I think you're nominated'", said Dappy."And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around."At the end of the day we're grateful to be where we are in our careers."If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a  re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" """,
    ]
254
    expected_text = [
Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
        "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"
        " reduce the risk of wildfires.",
257
258
259
260
261
262
263
264
265
266
        'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.',
    ]  # differs slightly from pytorch, likely due to numerical differences in linear layers
    model_name = "google/pegasus-xsum"

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.model_name)

    @cached_property
    def model(self):
267
        model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
268
269
270
271
272
273
274
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        assert self.expected_text == generated_words

    def translate_src_text(self, **tokenizer_kwargs):
275
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf")
276
277
278
279
280
281
282
283
284
285
286
287
        generated_ids = self.model.generate(
            model_inputs.input_ids,
            attention_mask=model_inputs.attention_mask,
            num_beams=2,
            use_cache=True,
        )
        generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)
        return generated_words

    @slow
    def test_batch_generation(self):
        self._assert_generated_batch_equal_expected()