test_modeling_tf_marian.py 13.1 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
21
22
23
import tempfile
import unittest
import warnings

from transformers import AutoTokenizer, MarianConfig, MarianTokenizer, TranslationPipeline, is_tf_available
24
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow, tooslow
25
from transformers.utils import cached_property
26

Yih-Dar's avatar
Yih-Dar committed
27
28
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
29
from ...test_pipeline_mixin import PipelineTesterMixin
30
31
32
33
34


if is_tf_available():
    import tensorflow as tf

35
    from transformers import TFAutoModelForSeq2SeqLM, TFMarianModel, TFMarianMTModel
36
37


38
39
@require_tf
class TFMarianModelTester:
40
    config_cls = MarianConfig
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFMarianModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
115
        head_mask = inputs_dict["head_mask"]
116
117
118
        self.batch_size = 1

        # first forward pass
119
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_marian_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
151
152
    head_mask=None,
    decoder_head_mask=None,
153
    cross_attn_head_mask=None,
154
155
156
157
158
159
160
161
162
163
164
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
165
166
167
168
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
169
170
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
171
172
173
174
175
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
176
177
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
178
        "cross_attn_head_mask": cross_attn_head_mask,
179
    }
180
181
182


@require_tf
183
class TFMarianModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
184
    all_model_classes = (TFMarianMTModel, TFMarianModel) if is_tf_available() else ()
185
    all_generative_model_classes = (TFMarianMTModel,) if is_tf_available() else ()
186
187
188
189
190
191
    pipeline_model_mapping = (
        {
            "conversational": TFMarianMTModel,
            "feature-extraction": TFMarianModel,
            "summarization": TFMarianMTModel,
            "text2text-generation": TFMarianMTModel,
Yih-Dar's avatar
Yih-Dar committed
192
            "translation": TFMarianMTModel,
193
194
195
196
        }
        if is_tf_available()
        else {}
    )
197
198
    is_encoder_decoder = True
    test_pruning = False
199
    test_onnx = False
200
201

    def setUp(self):
202
        self.model_tester = TFMarianModelTester(self)
203
204
205
206
207
        self.config_tester = ConfigTester(self, config_class=MarianConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

208
209
210
    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        model_class = self.all_generative_model_classes[0]
        input_ids = {
            "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
            "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
        }

        # Prepare our model
        model = model_class(config)
        model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
        # Let's load it from the disk to be sure we can use pre-trained weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            model = model_class.from_pretrained(tmpdirname)

        outputs_dict = model(input_ids)
        hidden_states = outputs_dict[0]

        # Add a dense layer on top to test integration with other keras modules
        outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

        # Compile extended model
        extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
        extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

243
    @tooslow
Julien Plu's avatar
Julien Plu committed
244
245
246
    def test_saved_model_creation(self):
        pass

247

Lysandre Debut's avatar
Lysandre Debut committed
248
@require_tf
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
class AbstractMarianIntegrationTest(unittest.TestCase):
    maxDiff = 1000  # show more chars for failing integration tests

    @classmethod
    def setUpClass(cls) -> None:
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
        return cls

    @cached_property
    def tokenizer(self) -> MarianTokenizer:
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

    @cached_property
    def model(self):
        warnings.simplefilter("error")
268
        model: TFMarianMTModel = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
269
270
271
272
273
274
275
276
277
278
279
280
        assert isinstance(model, TFMarianMTModel)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
281
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf")
282
283
284
285
286
287
288
289
290
        generated_ids = self.model.generate(
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
        )
        generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)
        return generated_words


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
291
@require_tf
292
293
294
295
296
297
298
299
class TestMarian_MT_EN(AbstractMarianIntegrationTest):
    """Cover low resource/high perplexity setting. This breaks if pad_token_id logits not set to LARGE_NEGATIVE."""

    src = "mt"
    tgt = "en"
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]

300
    @unittest.skip("Skipping until #12647 is resolved.")
301
302
303
304
305
306
307
    @slow
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
308
@require_tf
309
310
311
312
313
314
class TestMarian_en_zh(AbstractMarianIntegrationTest):
    src = "en"
    tgt = "zh"
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

315
    @unittest.skip("Skipping until #12647 is resolved.")
316
317
318
319
320
321
322
    @slow
    def test_batch_generation_en_zh(self):
        self._assert_generated_batch_equal_expected()


@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
323
@require_tf
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
class TestMarian_en_ROMANCE(AbstractMarianIntegrationTest):
    """Multilingual on target side."""

    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]

340
    @unittest.skip("Skipping until #12647 is resolved.")
341
342
343
344
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
        self._assert_generated_batch_equal_expected()

345
    @unittest.skip("Skipping until #12647 is resolved.")
346
347
348
349
350
    @slow
    def test_pipeline(self):
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="tf")
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])