run_language_modeling.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
27
from dataclasses import dataclass, field
from typing import Optional
28

29
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
30
    CONFIG_MAPPING,
31
32
33
34
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
35
36
37
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    LineByLineTextDataset,
38
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
42
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
43
)
44

45

46
logger = logging.getLogger(__name__)
47
48


49
50
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
51
52


Julien Chaumond's avatar
Julien Chaumond committed
53
54
55
56
57
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
58

Julien Chaumond's avatar
Julien Chaumond committed
59
60
61
62
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
63
64
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
65
66
67
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
68
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
71
    )
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
77
    )
78
79


Julien Chaumond's avatar
Julien Chaumond committed
80
81
82
83
84
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
85

Julien Chaumond's avatar
Julien Chaumond committed
86
87
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
88
    )
Julien Chaumond's avatar
Julien Chaumond committed
89
    eval_data_file: Optional[str] = field(
90
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
91
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
92
    )
Julien Chaumond's avatar
Julien Chaumond committed
93
94
95
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
96
97
    )

Julien Chaumond's avatar
Julien Chaumond committed
98
99
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
100
    )
Julien Chaumond's avatar
Julien Chaumond committed
101
102
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
103
104
    )

Julien Chaumond's avatar
Julien Chaumond committed
105
    block_size: int = field(
106
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
107
108
109
110
111
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
112
    )
Julien Chaumond's avatar
Julien Chaumond committed
113
114
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
115
116
117
    )


Julien Chaumond's avatar
Julien Chaumond committed
118
119
120
121
122
123
124
125
126
127
def get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False, local_rank=-1):
    file_path = args.eval_data_file if evaluate else args.train_data_file
    if args.line_by_line:
        return LineByLineTextDataset(
            tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, local_rank=local_rank
        )
    else:
        return TextDataset(
            tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, local_rank=local_rank,
        )
128

129

Julien Chaumond's avatar
Julien Chaumond committed
130
131
132
133
134
135
136
137
138
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
139
140
141
142
143
144
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )

    if (
Julien Chaumond's avatar
Julien Chaumond committed
145
146
147
148
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
149
150
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
151
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
152
        )
153
154

    # Setup logging
155
156
157
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
158
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
159
160
161
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
162
163
164
165
166
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
167
    )
Julien Chaumond's avatar
Julien Chaumond committed
168
    logger.info("Training/evaluation parameters %s", training_args)
169
170

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
171
    set_seed(training_args.seed)
172
173

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
174
175
176
177
178
179
180
181
182
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
183
    else:
Julien Chaumond's avatar
Julien Chaumond committed
184
185
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
186

Julien Chaumond's avatar
Julien Chaumond committed
187
188
189
190
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
191
    else:
192
        raise ValueError(
193
194
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
195
196
        )

Julien Chaumond's avatar
Julien Chaumond committed
197
    if model_args.model_name_or_path:
198
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
199
200
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
201
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
202
            cache_dir=model_args.cache_dir,
203
204
205
        )
    else:
        logger.info("Training new model from scratch")
206
        model = AutoModelWithLMHead.from_config(config)
207

Julien Chaumond's avatar
Julien Chaumond committed
208
    model.resize_token_embeddings(len(tokenizer))
209

Julien Chaumond's avatar
Julien Chaumond committed
210
211
212
213
214
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
            "flag (masked language modeling)."
        )
215

Julien Chaumond's avatar
Julien Chaumond committed
216
217
218
219
220
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
221

Julien Chaumond's avatar
Julien Chaumond committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    # Get datasets
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank)
        if training_args.do_train
        else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank, evaluate=True)
        if training_args.do_eval
        else None
    )
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
    )
236

Julien Chaumond's avatar
Julien Chaumond committed
237
238
239
240
241
242
243
244
245
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
246

Julien Chaumond's avatar
Julien Chaumond committed
247
248
249
250
251
252
253
254
255
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
256
257
258
259
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
260

Julien Chaumond's avatar
Julien Chaumond committed
261
262
263
264
    # Evaluation
    results = {}
    if training_args.do_eval and training_args.local_rank in [-1, 0]:
        logger.info("*** Evaluate ***")
265

Julien Chaumond's avatar
Julien Chaumond committed
266
        eval_output = trainer.evaluate()
267

Julien Chaumond's avatar
Julien Chaumond committed
268
269
        perplexity = math.exp(eval_output["loss"])
        result = {"perplexity": perplexity}
270

Julien Chaumond's avatar
Julien Chaumond committed
271
272
273
274
275
276
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
277

Julien Chaumond's avatar
Julien Chaumond committed
278
        results.update(result)
279
280
281
282

    return results


283
284
285
286
287
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


288
if __name__ == "__main__":
altsoph's avatar
altsoph committed
289
    main()