optimization_openai.py 5.43 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for OpenAI GPT model."""

thomwolf's avatar
thomwolf committed
17
18
19
import math
import torch
from torch.optim import Optimizer
thomwolf's avatar
thomwolf committed
20
from torch.optim.optimizer import required
thomwolf's avatar
thomwolf committed
21
from torch.nn.utils import clip_grad_norm_
lukovnikov's avatar
lukovnikov committed
22
import logging
lukovnikov's avatar
lukovnikov committed
23
24
from .optimization import SCHEDULES, _LRSchedule, WarmupCosineWithWarmupRestartsSchedule, \
    WarmupCosineWithHardRestartsSchedule, WarmupCosineSchedule, WarmupLinearSchedule, WarmupConstantSchedule
lukovnikov's avatar
lukovnikov committed
25
26

logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
27
28
29
30
31


class OpenAIAdam(Optimizer):
    """Implements Open AI version of Adam algorithm with weight decay fix.
    """
thomwolf's avatar
thomwolf committed
32
    def __init__(self, params, lr=required, schedule='warmup_linear', warmup=-1, t_total=-1,
33
                 betas=(0.9, 0.999), e=1e-8, weight_decay=0,
thomwolf's avatar
thomwolf committed
34
                 vector_l2=False, max_grad_norm=-1, **kwargs):
thomwolf's avatar
thomwolf committed
35
36
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
lukovnikov's avatar
lukovnikov committed
37
        if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
thomwolf's avatar
thomwolf committed
38
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
39
40
41
42
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {} - should be in [0.0, 1.0[".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {} - should be in [0.0, 1.0[".format(betas[1]))
thomwolf's avatar
thomwolf committed
43
        if not e >= 0.0:
lukovnikov's avatar
lukovnikov committed
44
45
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
        # initialize schedule object
lukovnikov's avatar
lukovnikov committed
46
        if not isinstance(schedule, _LRSchedule):
lukovnikov's avatar
lukovnikov committed
47
48
49
50
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
lukovnikov's avatar
lukovnikov committed
51
52
                logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. "
                               "Please specify custom warmup and t_total in _LRSchedule object.")
lukovnikov's avatar
lukovnikov committed
53
        defaults = dict(lr=lr, schedule=schedule,
54
                        betas=betas, e=e, weight_decay=weight_decay, vector_l2=vector_l2,
thomwolf's avatar
thomwolf committed
55
56
57
                        max_grad_norm=max_grad_norm)
        super(OpenAIAdam, self).__init__(params, defaults)

thomwolf's avatar
thomwolf committed
58
59
60
61
62
63
64
    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
lukovnikov's avatar
lukovnikov committed
65
66
                lr_scheduled = group['lr']
                lr_scheduled *= group['schedule'].get_lr(state['step'])
thomwolf's avatar
thomwolf committed
67
68
69
                lr.append(lr_scheduled)
        return lr

thomwolf's avatar
thomwolf committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
100
                beta1, beta2 = group['betas']
thomwolf's avatar
thomwolf committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

                state['step'] += 1

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                denom = exp_avg_sq.sqrt().add_(group['e'])

                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']

lukovnikov's avatar
lukovnikov committed
116
117
                lr_scheduled = group['lr']
                lr_scheduled *= group['schedule'].get_lr(state['step'])
thomwolf's avatar
thomwolf committed
118

thomwolf's avatar
thomwolf committed
119
120
121
122
123
                step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1

                p.data.addcdiv_(-step_size, exp_avg, denom)

                # Add weight decay at the end (fixed version)
thomwolf's avatar
thomwolf committed
124
125
                if (len(p.size()) > 1 or group['vector_l2']) and group['weight_decay'] > 0:
                    p.data.add_(-lr_scheduled * group['weight_decay'], p.data)
thomwolf's avatar
thomwolf committed
126
127

        return loss