test_modeling_mobilebert.py 14.9 KB
Newer Older
Vasily Shamporov's avatar
Vasily Shamporov committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Vasily Shamporov's avatar
Vasily Shamporov committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
Vasily Shamporov's avatar
Vasily Shamporov committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Vasily Shamporov's avatar
Vasily Shamporov committed
24
25
26
27


if is_torch_available():
    import torch
28

Vasily Shamporov's avatar
Vasily Shamporov committed
29
    from transformers import (
30
        MODEL_FOR_PRETRAINING_MAPPING,
Vasily Shamporov's avatar
Vasily Shamporov committed
31
32
        MobileBertConfig,
        MobileBertForMaskedLM,
33
        MobileBertForMultipleChoice,
Vasily Shamporov's avatar
Vasily Shamporov committed
34
35
36
37
38
        MobileBertForNextSentencePrediction,
        MobileBertForPreTraining,
        MobileBertForQuestionAnswering,
        MobileBertForSequenceClassification,
        MobileBertForTokenClassification,
39
        MobileBertModel,
Vasily Shamporov's avatar
Vasily Shamporov committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    )


class MobileBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=64,
        embedding_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.embedding_size = embedding_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
99
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Vasily Shamporov's avatar
Vasily Shamporov committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = MobileBertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            embedding_size=self.embedding_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_mobilebert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Vasily Shamporov's avatar
Vasily Shamporov committed
140

Stas Bekman's avatar
Stas Bekman committed
141
142
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
143
144
145
146
147
148
149

    def create_and_check_mobilebert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
150
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
151
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
152
153
154
155
156
157
158

    def create_and_check_mobilebert_for_next_sequence_prediction(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
159
        result = model(
Lysandre's avatar
Lysandre committed
160
161
162
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
163
            labels=sequence_labels,
Vasily Shamporov's avatar
Vasily Shamporov committed
164
        )
Stas Bekman's avatar
Stas Bekman committed
165
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
166
167
168
169
170
171
172

    def create_and_check_mobilebert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
173
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
174
175
176
177
178
179
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=token_labels,
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
180
181
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
182
183
184
185
186
187
188

    def create_and_check_mobilebert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
189
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
190
191
192
193
194
195
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
196
197
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
Vasily Shamporov's avatar
Vasily Shamporov committed
198
199
200
201
202
203
204
205

    def create_and_check_mobilebert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = MobileBertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
206
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
207
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
208
209
210
211
212
213
214
215

    def create_and_check_mobilebert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = MobileBertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
216
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
217
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
218
219
220
221
222
223
224
225
226
227
228

    def create_and_check_mobilebert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = MobileBertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
229
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
230
231
232
233
234
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
235
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Vasily Shamporov's avatar
Vasily Shamporov committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class MobileBertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            MobileBertModel,
            MobileBertForMaskedLM,
            MobileBertForMultipleChoice,
            MobileBertForNextSentencePrediction,
            MobileBertForPreTraining,
            MobileBertForQuestionAnswering,
            MobileBertForSequenceClassification,
            MobileBertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )

270
271
272
273
274
275
276
277
278
279
280
281
282
283
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class in MODEL_FOR_PRETRAINING_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["next_sentence_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

Vasily Shamporov's avatar
Vasily Shamporov committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    def setUp(self):
        self.model_tester = MobileBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_mobilebert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs)


def _long_tensor(tok_lst):
Lysandre's avatar
Lysandre committed
325
326
327
328
329
    return torch.tensor(
        tok_lst,
        dtype=torch.long,
        device=torch_device,
    )
Vasily Shamporov's avatar
Vasily Shamporov committed
330
331
332
333
334
335


TOLERANCE = 1e-3


@require_torch
336
337
@require_sentencepiece
@require_tokenizers
Vasily Shamporov's avatar
Vasily Shamporov committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
class MobileBertModelIntegrationTests(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
        model = MobileBertModel.from_pretrained("google/mobilebert-uncased").to(torch_device)
        input_ids = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]])
        with torch.no_grad():
            output = model(input_ids)[0]
        expected_shape = torch.Size((1, 9, 512))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [
                [
                    [-2.4736526e07, 8.2691656e04, 1.6521838e05],
                    [-5.7541704e-01, 3.9056022e00, 4.4011507e00],
                    [2.6047359e00, 1.5677652e00, -1.7324188e-01],
                ]
            ],
            device=torch_device,
        )

        # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
        # ~1 difference, it's therefore not a good idea to measure using addition.
        # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
        # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
        lower_bound = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE)
        upper_bound = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE)

        self.assertTrue(lower_bound and upper_bound)