image_transforms.py 31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import warnings
17
from typing import Iterable, List, Optional, Tuple, Union
18
19
20

import numpy as np

21
from .image_utils import (
22
    ChannelDimension,
23
    ImageInput,
24
25
26
27
28
    get_channel_dimension_axis,
    get_image_size,
    infer_channel_dimension_format,
    to_numpy_array,
)
29
30
from .utils import ExplicitEnum, TensorType, is_jax_tensor, is_tf_tensor, is_torch_tensor
from .utils.import_utils import (
31
32
33
34
35
36
    is_flax_available,
    is_tf_available,
    is_torch_available,
    is_vision_available,
    requires_backends,
)
37
38
39
40
41


if is_vision_available():
    import PIL

42
    from .image_utils import PILImageResampling
43

44
45
46
47
48
49
50
51
if is_torch_available():
    import torch

if is_tf_available():
    import tensorflow as tf

if is_flax_available():
    import jax.numpy as jnp
52
53


54
55
56
57
58
def to_channel_dimension_format(
    image: np.ndarray,
    channel_dim: Union[ChannelDimension, str],
    input_channel_dim: Optional[Union[ChannelDimension, str]] = None,
) -> np.ndarray:
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    """
    Converts `image` to the channel dimension format specified by `channel_dim`.

    Args:
        image (`numpy.ndarray`):
            The image to have its channel dimension set.
        channel_dim (`ChannelDimension`):
            The channel dimension format to use.

    Returns:
        `np.ndarray`: The image with the channel dimension set to `channel_dim`.
    """
    if not isinstance(image, np.ndarray):
        raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")

74
75
76
    if input_channel_dim is None:
        input_channel_dim = infer_channel_dimension_format(image)

77
    target_channel_dim = ChannelDimension(channel_dim)
78
    if input_channel_dim == target_channel_dim:
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        return image

    if target_channel_dim == ChannelDimension.FIRST:
        image = image.transpose((2, 0, 1))
    elif target_channel_dim == ChannelDimension.LAST:
        image = image.transpose((1, 2, 0))
    else:
        raise ValueError("Unsupported channel dimension format: {}".format(channel_dim))

    return image


def rescale(
    image: np.ndarray, scale: float, data_format: Optional[ChannelDimension] = None, dtype=np.float32
) -> np.ndarray:
    """
    Rescales `image` by `scale`.

    Args:
        image (`np.ndarray`):
            The image to rescale.
        scale (`float`):
            The scale to use for rescaling the image.
        data_format (`ChannelDimension`, *optional*):
            The channel dimension format of the image. If not provided, it will be the same as the input image.
        dtype (`np.dtype`, *optional*, defaults to `np.float32`):
            The dtype of the output image. Defaults to `np.float32`. Used for backwards compatibility with feature
            extractors.

    Returns:
        `np.ndarray`: The rescaled image.
    """
    if not isinstance(image, np.ndarray):
        raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")

    rescaled_image = image * scale
    if data_format is not None:
        rescaled_image = to_channel_dimension_format(rescaled_image, data_format)
    rescaled_image = rescaled_image.astype(dtype)
    return rescaled_image


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def _rescale_for_pil_conversion(image):
    """
    Detects whether or not the image needs to be rescaled before being converted to a PIL image.

    The assumption is that if the image is of type `np.float` and all values are between 0 and 1, it needs to be
    rescaled.
    """
    if image.dtype == np.uint8:
        do_rescale = False
    elif np.allclose(image, image.astype(int)):
        if np.all(0 <= image) and np.all(image <= 255):
            do_rescale = False
        else:
            raise ValueError(
                "The image to be converted to a PIL image contains values outside the range [0, 255], "
                f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
            )
    elif np.all(0 <= image) and np.all(image <= 1):
        do_rescale = True
    else:
        raise ValueError(
            "The image to be converted to a PIL image contains values outside the range [0, 1], "
            f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
        )
    return do_rescale


148
def to_pil_image(
149
    image: Union[np.ndarray, "PIL.Image.Image", "torch.Tensor", "tf.Tensor", "jnp.ndarray"],
150
    do_rescale: Optional[bool] = None,
151
) -> "PIL.Image.Image":
152
153
154
155
156
157
158
159
160
    """
    Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
    needed.

    Args:
        image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor` or `tf.Tensor`):
            The image to convert to the `PIL.Image` format.
        do_rescale (`bool`, *optional*):
            Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default
161
162
            to `True` if the image type is a floating type and casting to `int` would result in a loss of precision,
            and `False` otherwise.
163
164
165
166

    Returns:
        `PIL.Image.Image`: The converted image.
    """
167
168
    requires_backends(to_pil_image, ["vision"])

169
170
171
172
173
174
175
176
177
178
179
180
181
182
    if isinstance(image, PIL.Image.Image):
        return image

    # Convert all tensors to numpy arrays before converting to PIL image
    if is_torch_tensor(image) or is_tf_tensor(image):
        image = image.numpy()
    elif is_jax_tensor(image):
        image = np.array(image)
    elif not isinstance(image, np.ndarray):
        raise ValueError("Input image type not supported: {}".format(type(image)))

    # If the channel as been moved to first dim, we put it back at the end.
    image = to_channel_dimension_format(image, ChannelDimension.LAST)

amyeroberts's avatar
amyeroberts committed
183
184
185
    # If there is a single channel, we squeeze it, as otherwise PIL can't handle it.
    image = np.squeeze(image, axis=-1) if image.shape[-1] == 1 else image

186
    # PIL.Image can only store uint8 values so we rescale the image to be between 0 and 255 if needed.
187
    do_rescale = _rescale_for_pil_conversion(image) if do_rescale is None else do_rescale
188

189
190
    if do_rescale:
        image = rescale(image, 255)
191

192
193
194
195
    image = image.astype(np.uint8)
    return PIL.Image.fromarray(image)


196
# Logic adapted from torchvision resizing logic: https://github.com/pytorch/vision/blob/511924c1ced4ce0461197e5caa64ce5b9e558aab/torchvision/transforms/functional.py#L366
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def get_resize_output_image_size(
    input_image: np.ndarray,
    size: Union[int, Tuple[int, int], List[int], Tuple[int]],
    default_to_square: bool = True,
    max_size: Optional[int] = None,
) -> tuple:
    """
    Find the target (height, width) dimension of the output image after resizing given the input image and the desired
    size.

    Args:
        input_image (`np.ndarray`):
            The image to resize.
        size (`int` or `Tuple[int, int]` or List[int] or Tuple[int]):
            The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be matched to
            this.

            If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
            `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to this
            number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
        default_to_square (`bool`, *optional*, defaults to `True`):
            How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a square
            (`size`,`size`). If set to `False`, will replicate
            [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
            with support for resizing only the smallest edge and providing an optional `max_size`.
        max_size (`int`, *optional*):
            The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater
            than `max_size` after being resized according to `size`, then the image is resized again so that the longer
            edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller edge may be shorter
            than `size`. Only used if `default_to_square` is `False`.

    Returns:
        `tuple`: The target (height, width) dimension of the output image after resizing.
    """
    if isinstance(size, (tuple, list)):
        if len(size) == 2:
            return tuple(size)
        elif len(size) == 1:
            # Perform same logic as if size was an int
            size = size[0]
        else:
            raise ValueError("size must have 1 or 2 elements if it is a list or tuple")

    if default_to_square:
        return (size, size)

    height, width = get_image_size(input_image)
    short, long = (width, height) if width <= height else (height, width)
    requested_new_short = size

    new_short, new_long = requested_new_short, int(requested_new_short * long / short)

    if max_size is not None:
        if max_size <= requested_new_short:
            raise ValueError(
                f"max_size = {max_size} must be strictly greater than the requested "
                f"size for the smaller edge size = {size}"
            )
        if new_long > max_size:
            new_short, new_long = int(max_size * new_short / new_long), max_size

    return (new_long, new_short) if width <= height else (new_short, new_long)


def resize(
    image,
    size: Tuple[int, int],
264
    resample: "PILImageResampling" = None,
265
    reducing_gap: Optional[int] = None,
266
267
268
269
    data_format: Optional[ChannelDimension] = None,
    return_numpy: bool = True,
) -> np.ndarray:
    """
270
    Resizes `image` to `(height, width)` specified by `size` using the PIL library.
271
272
273
274
275
276

    Args:
        image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
            The image to resize.
        size (`Tuple[int, int]`):
            The size to use for resizing the image.
277
        resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
278
            The filter to user for resampling.
279
280
281
        reducing_gap (`int`, *optional*):
            Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to
            the fair resampling. See corresponding Pillow documentation for more details.
282
        data_format (`ChannelDimension`, *optional*):
283
            The channel dimension format of the output image. If unset, will use the inferred format from the input.
284
285
286
287
288
289
290
        return_numpy (`bool`, *optional*, defaults to `True`):
            Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
            returned.

    Returns:
        `np.ndarray`: The resized image.
    """
291
292
293
294
    requires_backends(resize, ["vision"])

    resample = resample if resample is not None else PILImageResampling.BILINEAR

295
296
297
298
299
300
301
302
303
    if not len(size) == 2:
        raise ValueError("size must have 2 elements")

    # For all transformations, we want to keep the same data format as the input image unless otherwise specified.
    # The resized image from PIL will always have channels last, so find the input format first.
    data_format = infer_channel_dimension_format(image) if data_format is None else data_format

    # To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
    # the pillow library to resize the image and then convert back to numpy
304
    do_rescale = False
305
    if not isinstance(image, PIL.Image.Image):
306
307
        do_rescale = _rescale_for_pil_conversion(image)
        image = to_pil_image(image, do_rescale=do_rescale)
308
309
    height, width = size
    # PIL images are in the format (width, height)
310
    resized_image = image.resize((width, height), resample=resample, reducing_gap=reducing_gap)
311
312
313

    if return_numpy:
        resized_image = np.array(resized_image)
amyeroberts's avatar
amyeroberts committed
314
315
316
        # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
        # so we need to add it back if necessary.
        resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
317
318
319
320
        # The image is always in channels last format after converting from a PIL image
        resized_image = to_channel_dimension_format(
            resized_image, data_format, input_channel_dim=ChannelDimension.LAST
        )
321
322
323
        # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
        # rescale it back to the original range.
        resized_image = rescale(resized_image, 1 / 255) if do_rescale else resized_image
324
    return resized_image
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345


def normalize(
    image: np.ndarray,
    mean: Union[float, Iterable[float]],
    std: Union[float, Iterable[float]],
    data_format: Optional[ChannelDimension] = None,
) -> np.ndarray:
    """
    Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.

    image = (image - mean) / std

    Args:
        image (`np.ndarray`):
            The image to normalize.
        mean (`float` or `Iterable[float]`):
            The mean to use for normalization.
        std (`float` or `Iterable[float]`):
            The standard deviation to use for normalization.
        data_format (`ChannelDimension`, *optional*):
346
            The channel dimension format of the output image. If unset, will use the inferred format from the input.
347
    """
348
349
    requires_backends(normalize, ["vision"])

350
351
352
353
354
355
356
357
358
359
    if isinstance(image, PIL.Image.Image):
        warnings.warn(
            "PIL.Image.Image inputs are deprecated and will be removed in v4.26.0. Please use numpy arrays instead.",
            FutureWarning,
        )
        # Convert PIL image to numpy array with the same logic as in the previous feature extractor normalize -
        # casting to numpy array and dividing by 255.
        image = to_numpy_array(image)
        image = rescale(image, scale=1 / 255)

360
361
362
    if not isinstance(image, np.ndarray):
        raise ValueError("image must be a numpy array")

363
364
365
366
367
368
369
370
371
    input_data_format = infer_channel_dimension_format(image)
    channel_axis = get_channel_dimension_axis(image)
    num_channels = image.shape[channel_axis]

    if isinstance(mean, Iterable):
        if len(mean) != num_channels:
            raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
    else:
        mean = [mean] * num_channels
amyeroberts's avatar
amyeroberts committed
372
    mean = np.array(mean, dtype=image.dtype)
373
374
375
376
377
378

    if isinstance(std, Iterable):
        if len(std) != num_channels:
            raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
    else:
        std = [std] * num_channels
amyeroberts's avatar
amyeroberts committed
379
    std = np.array(std, dtype=image.dtype)
380
381
382
383
384
385
386
387

    if input_data_format == ChannelDimension.LAST:
        image = (image - mean) / std
    else:
        image = ((image.T - mean) / std).T

    image = to_channel_dimension_format(image, data_format) if data_format is not None else image
    return image
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418


def center_crop(
    image: np.ndarray,
    size: Tuple[int, int],
    data_format: Optional[Union[str, ChannelDimension]] = None,
    return_numpy: Optional[bool] = None,
) -> np.ndarray:
    """
    Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
    the size given, it will be padded (so the returned result will always be of size `size`).

    Args:
        image (`np.ndarray`):
            The image to crop.
        size (`Tuple[int, int]`):
            The target size for the cropped image.
        data_format (`str` or `ChannelDimension`, *optional*):
            The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            If unset, will use the inferred format of the input image.
        return_numpy (`bool`, *optional*):
            Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
            previous ImageFeatureExtractionMixin method.
                - Unset: will return the same type as the input image.
                - `True`: will return a numpy array.
                - `False`: will return a `PIL.Image.Image` object.
    Returns:
        `np.ndarray`: The cropped image.
    """
419
420
    requires_backends(center_crop, ["vision"])

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    if isinstance(image, PIL.Image.Image):
        warnings.warn(
            "PIL.Image.Image inputs are deprecated and will be removed in v4.26.0. Please use numpy arrays instead.",
            FutureWarning,
        )
        image = to_numpy_array(image)
        return_numpy = False if return_numpy is None else return_numpy
    else:
        return_numpy = True if return_numpy is None else return_numpy

    if not isinstance(image, np.ndarray):
        raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")

    if not isinstance(size, Iterable) or len(size) != 2:
        raise ValueError("size must have 2 elements representing the height and width of the output image")

    input_data_format = infer_channel_dimension_format(image)
    output_data_format = data_format if data_format is not None else input_data_format

    # We perform the crop in (C, H, W) format and then convert to the output format
    image = to_channel_dimension_format(image, ChannelDimension.FIRST)

    orig_height, orig_width = get_image_size(image)
    crop_height, crop_width = size
amyeroberts's avatar
amyeroberts committed
445
    crop_height, crop_width = int(crop_height), int(crop_width)
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

    # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
    top = (orig_height - crop_height) // 2
    bottom = top + crop_height
    # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
    left = (orig_width - crop_width) // 2
    right = left + crop_width

    # Check if cropped area is within image boundaries
    if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width:
        image = image[..., top:bottom, left:right]
        image = to_channel_dimension_format(image, output_data_format)
        return image

    # Otherwise, we may need to pad if the image is too small. Oh joy...
    new_height = max(crop_height, orig_height)
    new_width = max(crop_width, orig_width)
    new_shape = image.shape[:-2] + (new_height, new_width)
    new_image = np.zeros_like(image, shape=new_shape)

    # If the image is too small, pad it with zeros
    top_pad = (new_height - orig_height) // 2
    bottom_pad = top_pad + orig_height
    left_pad = (new_width - orig_width) // 2
    right_pad = left_pad + orig_width
    new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image

    top += top_pad
    bottom += top_pad
    left += left_pad
    right += left_pad

    new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
    new_image = to_channel_dimension_format(new_image, output_data_format)

    if not return_numpy:
        new_image = to_pil_image(new_image)

    return new_image
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628


def _center_to_corners_format_torch(bboxes_center: "torch.Tensor") -> "torch.Tensor":
    center_x, center_y, width, height = bboxes_center.unbind(-1)
    bbox_corners = torch.stack(
        # top left x, top left y, bottom right x, bottom right y
        [(center_x - 0.5 * width), (center_y - 0.5 * height), (center_x + 0.5 * width), (center_y + 0.5 * height)],
        dim=-1,
    )
    return bbox_corners


def _center_to_corners_format_numpy(bboxes_center: np.ndarray) -> np.ndarray:
    center_x, center_y, width, height = bboxes_center.T
    bboxes_corners = np.stack(
        # top left x, top left y, bottom right x, bottom right y
        [center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
        axis=-1,
    )
    return bboxes_corners


def _center_to_corners_format_tf(bboxes_center: "tf.Tensor") -> "tf.Tensor":
    center_x, center_y, width, height = tf.unstack(bboxes_center, axis=-1)
    bboxes_corners = tf.stack(
        # top left x, top left y, bottom right x, bottom right y
        [center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
        axis=-1,
    )
    return bboxes_corners


# 2 functions below inspired by https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def center_to_corners_format(bboxes_center: TensorType) -> TensorType:
    """
    Converts bounding boxes from center format to corners format.

    center format: contains the coordinate for the center of the box and its width, height dimensions
        (center_x, center_y, width, height)
    corners format: contains the coodinates for the top-left and bottom-right corners of the box
        (top_left_x, top_left_y, bottom_right_x, bottom_right_y)
    """
    # Function is used during model forward pass, so we use the input framework if possible, without
    # converting to numpy
    if is_torch_tensor(bboxes_center):
        return _center_to_corners_format_torch(bboxes_center)
    elif isinstance(bboxes_center, np.ndarray):
        return _center_to_corners_format_numpy(bboxes_center)
    elif is_tf_tensor(bboxes_center):
        return _center_to_corners_format_tf(bboxes_center)

    raise ValueError(f"Unsupported input type {type(bboxes_center)}")


def _corners_to_center_format_torch(bboxes_corners: "torch.Tensor") -> "torch.Tensor":
    top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.unbind(-1)
    b = [
        (top_left_x + bottom_right_x) / 2,  # center x
        (top_left_y + bottom_right_y) / 2,  # center y
        (bottom_right_x - top_left_x),  # width
        (bottom_right_y - top_left_y),  # height
    ]
    return torch.stack(b, dim=-1)


def _corners_to_center_format_numpy(bboxes_corners: np.ndarray) -> np.ndarray:
    top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.T
    bboxes_center = np.stack(
        [
            (top_left_x + bottom_right_x) / 2,  # center x
            (top_left_y + bottom_right_y) / 2,  # center y
            (bottom_right_x - top_left_x),  # width
            (bottom_right_y - top_left_y),  # height
        ],
        axis=-1,
    )
    return bboxes_center


def _corners_to_center_format_tf(bboxes_corners: "tf.Tensor") -> "tf.Tensor":
    top_left_x, top_left_y, bottom_right_x, bottom_right_y = tf.unstack(bboxes_corners, axis=-1)
    bboxes_center = tf.stack(
        [
            (top_left_x + bottom_right_x) / 2,  # center x
            (top_left_y + bottom_right_y) / 2,  # center y
            (bottom_right_x - top_left_x),  # width
            (bottom_right_y - top_left_y),  # height
        ],
        axis=-1,
    )
    return bboxes_center


def corners_to_center_format(bboxes_corners: TensorType) -> TensorType:
    """
    Converts bounding boxes from corners format to center format.

    corners format: contains the coodinates for the top-left and bottom-right corners of the box
        (top_left_x, top_left_y, bottom_right_x, bottom_right_y)
    center format: contains the coordinate for the center of the box and its the width, height dimensions
        (center_x, center_y, width, height)
    """
    # Inverse function accepts different input types so implemented here too
    if is_torch_tensor(bboxes_corners):
        return _corners_to_center_format_torch(bboxes_corners)
    elif isinstance(bboxes_corners, np.ndarray):
        return _corners_to_center_format_numpy(bboxes_corners)
    elif is_tf_tensor(bboxes_corners):
        return _corners_to_center_format_tf(bboxes_corners)

    raise ValueError(f"Unsupported input type {type(bboxes_corners)}")


# 2 functions below copied from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
# Copyright (c) 2018, Alexander Kirillov
# All rights reserved.
def rgb_to_id(color):
    """
    Converts RGB color to unique ID.
    """
    if isinstance(color, np.ndarray) and len(color.shape) == 3:
        if color.dtype == np.uint8:
            color = color.astype(np.int32)
        return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
    return int(color[0] + 256 * color[1] + 256 * 256 * color[2])


def id_to_rgb(id_map):
    """
    Converts unique ID to RGB color.
    """
    if isinstance(id_map, np.ndarray):
        id_map_copy = id_map.copy()
        rgb_shape = tuple(list(id_map.shape) + [3])
        rgb_map = np.zeros(rgb_shape, dtype=np.uint8)
        for i in range(3):
            rgb_map[..., i] = id_map_copy % 256
            id_map_copy //= 256
        return rgb_map
    color = []
    for _ in range(3):
        color.append(id_map % 256)
        id_map //= 256
    return color
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725


class PaddingMode(ExplicitEnum):
    """
    Enum class for the different padding modes to use when padding images.
    """

    CONSTANT = "constant"
    REFLECT = "reflect"
    REPLICATE = "replicate"
    SYMMETRIC = "symmetric"


def pad(
    image: np.ndarray,
    padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
    mode: PaddingMode = PaddingMode.CONSTANT,
    constant_values: Union[float, Iterable[float]] = 0.0,
    data_format: Optional[Union[str, ChannelDimension]] = None,
    input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
    """
    Pads the `image` with the specified (height, width) `padding` and `mode`.

    Args:
        image (`np.ndarray`):
            The image to pad.
        padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
            Padding to apply to the edges of the height, width axes. Can be one of three formats:
            - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
            - `((before, after),)` yields same before and after pad for height and width.
            - `(pad,)` or int is a shortcut for before = after = pad width for all axes.
        mode (`PaddingMode`):
            The padding mode to use. Can be one of:
                - `"constant"`: pads with a constant value.
                - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
                  vector along each axis.
                - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
                - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
        constant_values (`float` or `Iterable[float]`, *optional*):
            The value to use for the padding if `mode` is `"constant"`.
        data_format (`str` or `ChannelDimension`, *optional*):
            The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            If unset, will use same as the input image.
        input_data_format (`str` or `ChannelDimension`, *optional*):
            The channel dimension format for the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            If unset, will use the inferred format of the input image.

    Returns:
        `np.ndarray`: The padded image.

    """
    if input_data_format is None:
        input_data_format = infer_channel_dimension_format(image)

    def _expand_for_data_format(values):
        """
        Convert values to be in the format expected by np.pad based on the data format.
        """
        if isinstance(values, (int, float)):
            values = ((values, values), (values, values))
        elif isinstance(values, tuple) and len(values) == 1:
            values = ((values[0], values[0]), (values[0], values[0]))
        elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], int):
            values = (values, values)
        elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], tuple):
            values = values
        else:
            raise ValueError(f"Unsupported format: {values}")

        # add 0 for channel dimension
        values = ((0, 0), *values) if input_data_format == ChannelDimension.FIRST else (*values, (0, 0))

        # Add additional padding if there's a batch dimension
        values = (0, *values) if image.ndim == 4 else values
        return values

    padding = _expand_for_data_format(padding)

    if mode == PaddingMode.CONSTANT:
        constant_values = _expand_for_data_format(constant_values)
        image = np.pad(image, padding, mode="constant", constant_values=constant_values)
    elif mode == PaddingMode.REFLECT:
        image = np.pad(image, padding, mode="reflect")
    elif mode == PaddingMode.REPLICATE:
        image = np.pad(image, padding, mode="edge")
    elif mode == PaddingMode.SYMMETRIC:
        image = np.pad(image, padding, mode="symmetric")
    else:
        raise ValueError(f"Invalid padding mode: {mode}")

    image = to_channel_dimension_format(image, data_format) if data_format is not None else image
    return image
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744


# TODO (Amy): Accept 1/3/4 channel numpy array as input and return np.array as default
def convert_to_rgb(image: ImageInput) -> ImageInput:
    """
    Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
    as is.

    Args:
        image (Image):
            The image to convert.
    """
    requires_backends(convert_to_rgb, ["vision"])

    if not isinstance(image, PIL.Image.Image):
        return image

    image = image.convert("RGB")
    return image
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773


def flip_channel_order(image: np.ndarray, data_format: Optional[ChannelDimension] = None) -> np.ndarray:
    """
    Flips the channel order of the image.

    If the image is in RGB format, it will be converted to BGR and vice versa.

    Args:
        image (`np.ndarray`):
            The image to flip.
        data_format (`ChannelDimension`, *optional*):
            The channel dimension format for the output image. Can be one of:
                - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            If unset, will use same as the input image.
    """

    input_data_format = infer_channel_dimension_format(image)
    if input_data_format == ChannelDimension.LAST:
        image = image[..., ::-1]
    elif input_data_format == ChannelDimension.FIRST:
        image = image[::-1, ...]
    else:
        raise ValueError(f"Unsupported channel dimension: {input_data_format}")

    if data_format is not None:
        image = to_channel_dimension_format(image, data_format)
    return image