mms.mdx 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# MMS

## Overview

17
The MMS model was proposed in [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) 
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli

The abstract from the paper is the following:

*Expanding the language coverage of speech technology has the potential to improve access to information for many more people. 
However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000
languages spoken around the world. 
The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task. 
The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging
self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, 
a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models 
for the same number of languages, as well as a language identification model for 4,017 languages. 
Experiments show that our multilingual speech recognition model more than halves the word error rate of 
Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.*

33
Here are the different models open sourced in the MMS project. The models and code are originally released [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms). We have add them to the `transformers` framework, making them easier to use.
34

35
### Automatic Speech Recognition (ASR)
36

37
The ASR model checkpoints  can be found here : [mms-1b-fl102](https://huggingface.co/facebook/mms-1b-fl102), [mms-1b-l1107](https://huggingface.co/facebook/mms-1b-l1107), [mms-1b-all](https://huggingface.co/facebook/mms-1b-all). For best accuracy, use the `mms-1b-all` model. 
38

39
Tips:
40

41
42
43
44
45
- All ASR models accept a float array corresponding to the raw waveform of the speech signal. The raw waveform should be pre-processed with [`Wav2Vec2FeatureExtractor`].
- The models were trained using connectionist temporal classification (CTC) so the model output has to be decoded using
  [`Wav2Vec2CTCTokenizer`].
- You can load different language adapter weights for different languages via [`~Wav2Vec2PreTrainedModel.load_adapter`]. Language adapters only consists of roughly 2 million parameters 
  and can therefore be efficiently loaded on the fly when needed.
46

47
#### Loading
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

By default MMS loads adapter weights for English. If you want to load adapter weights of another language 
make sure to specify `target_lang=<your-chosen-target-lang>` as well as `"ignore_mismatched_sizes=True`.
The `ignore_mismatched_sizes=True` keyword has to be passed to allow the language model head to be resized according
to the vocabulary of the specified language.
Similarly, the processor should be loaded with the same target language

```py
from transformers import Wav2Vec2ForCTC, AutoProcessor

model_id = "facebook/mms-1b-all"
target_lang = "fra"

processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang)
model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True)
```

<Tip>

You can safely ignore a warning such as:
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
```text
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/mms-1b-all and are newly initialized because the shapes did not match:
- lm_head.bias: found shape torch.Size([154]) in the checkpoint and torch.Size([314]) in the model instantiated
- lm_head.weight: found shape torch.Size([154, 1280]) in the checkpoint and torch.Size([314, 1280]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```

</Tip>

If you want to use the ASR pipeline, you can load your chosen target language as such:

```py
from transformers import pipeline

model_id = "facebook/mms-1b-all"
target_lang = "fra"

pipe = pipeline(model=model_id, model_kwargs={"target_lang": "fra", "ignore_mismatched_sizes": True})
```

89
#### Inference
90

91
Next, let's look at how we can run MMS in inference and change adapter layers after having called [`~PretrainedModel.from_pretrained`]
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
First, we load audio data in different languages using the [Datasets](https://github.com/huggingface/datasets).

```py
from datasets import load_dataset, Audio

# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]

# French
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "fr", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
fr_sample = next(iter(stream_data))["audio"]["array"]
```

Next, we load the model and processor

```py
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch

model_id = "facebook/mms-1b-all"

processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
```

Now we process the audio data, pass the processed audio data to the model and transcribe the model output,
just like we usually do for [`Wav2Vec2ForCTC`].

```py
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs).logits

ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# 'joe keton disapproved of films and buster also had reservations about the media'
```

We can now keep the same model in memory and simply switch out the language adapters by
calling the convenient [`~Wav2Vec2ForCTC.load_adapter`] function for the model and [`~Wav2Vec2CTCTokenizer.set_target_lang`] for the tokenizer.
We pass the target language as an input - `"fra"` for French.

```py
processor.tokenizer.set_target_lang("fra")
model.load_adapter("fra")

inputs = processor(fr_sample, sampling_rate=16_000, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs).logits

ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# "ce dernier est vol tout au long de l'histoire romaine"
```

In the same way the language can be switched out for all other supported languages. Please have a look at:

```py
processor.tokenizer.vocab.keys()
```

to see all supported languages.
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

To further improve performance from ASR models, language model decoding can be used. See the documentation [here](https://huggingface.co/facebook/mms-1b-all) for further details.  

### Speech Synthesis (TTS)

Individual TTS models are available for each of the 1100+ languages. The models and inference documentation can be found [here](https://huggingface.co/facebook/mms-tts).

### Language Identification (LID)

Different LID models are available based on the number of languages they can recognize - [126](https://huggingface.co/facebook/mms-lid-126), [256](https://huggingface.co/facebook/mms-lid-256), [512](https://huggingface.co/facebook/mms-lid-512), [1024](https://huggingface.co/facebook/mms-lid-1024), [2048](https://huggingface.co/facebook/mms-lid-2048), [4017](https://huggingface.co/facebook/mms-lid-4017). 

#### Inference
First, we install transformers and some other libraries
```
pip install torch accelerate torchaudio datasets
pip install --upgrade transformers
````
pip install torch datasets[audio]
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.

```py
from datasets import load_dataset, Audio

# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]

# Arabic
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "ar", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
ar_sample = next(iter(stream_data))["audio"]["array"]
```

Next, we load the model and processor

```py
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import torch

model_id = "facebook/mms-lid-126"

processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
```

Now we process the audio data, pass the processed audio data to the model to classify it into a language, just like we usually do for Wav2Vec2 audio classification models such as [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/harshit345/xlsr-wav2vec-speech-emotion-recognition)

```py
# English
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs).logits

lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'eng'

# Arabic
inputs = processor(ar_sample, sampling_rate=16_000, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs).logits

lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'ara'
```

To see all the supported languages of a checkpoint, you can print out the language ids as follows:
```py
processor.id2label.values()
```

### Audio Pretrained Models

Pretrained models are available for two different sizes - [300M](https://huggingface.co/facebook/mms-300m) , [1Bil](https://huggingface.co/facebook/mms-1b). The architecture is based on the Wav2Vec2 model, so one can refer to [Wav2Vec2's documentation page](wav2vec2) for further details on how to finetune with models for various downstream tasks.