"tests/modeling_tf_xlm_test.py" did not exist on "63e3827c6bc5af9807b77e07fdcdae74b7d57161"
test_modeling_swinv2.py 19.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Swinv2 model. """
import collections
NielsRogge's avatar
NielsRogge committed
17
import inspect
18
19
20
21
22
23
import unittest

from transformers import Swinv2Config
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available

NielsRogge's avatar
NielsRogge committed
24
from ...test_backbone_common import BackboneTesterMixin
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
28
29
30
31
32
33


if is_torch_available():
    import torch
    from torch import nn

NielsRogge's avatar
NielsRogge committed
34
    from transformers import Swinv2Backbone, Swinv2ForImageClassification, Swinv2ForMaskedImageModeling, Swinv2Model
35
36
37
38
39
    from transformers.models.swinv2.modeling_swinv2 import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST

if is_vision_available():
    from PIL import Image

40
    from transformers import AutoImageProcessor
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


class Swinv2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        patch_size=2,
        num_channels=3,
        embed_dim=16,
        depths=[1, 2, 1],
        num_heads=[2, 2, 4],
        window_size=2,
        mlp_ratio=2.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=False,
        patch_norm=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        is_training=True,
        scope=None,
        use_labels=True,
        type_sequence_label_size=10,
        encoder_stride=8,
NielsRogge's avatar
NielsRogge committed
70
71
        out_features=["stage1", "stage2"],
        out_indices=[1, 2],
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.patch_norm = patch_norm
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.is_training = is_training
        self.scope = scope
        self.use_labels = use_labels
        self.type_sequence_label_size = type_sequence_label_size
        self.encoder_stride = encoder_stride
NielsRogge's avatar
NielsRogge committed
97
98
        self.out_features = out_features
        self.out_indices = out_indices
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return Swinv2Config(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            embed_dim=self.embed_dim,
            depths=self.depths,
            num_heads=self.num_heads,
            window_size=self.window_size,
            mlp_ratio=self.mlp_ratio,
            qkv_bias=self.qkv_bias,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            drop_path_rate=self.drop_path_rate,
            hidden_act=self.hidden_act,
            use_absolute_embeddings=self.use_absolute_embeddings,
            path_norm=self.patch_norm,
            layer_norm_eps=self.layer_norm_eps,
            initializer_range=self.initializer_range,
            encoder_stride=self.encoder_stride,
NielsRogge's avatar
NielsRogge committed
131
132
            out_features=self.out_features,
            out_indices=self.out_indices,
133
134
135
136
137
138
139
140
141
142
143
144
145
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = Swinv2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))

NielsRogge's avatar
NielsRogge committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def create_and_check_backbone(self, config, pixel_values, labels):
        model = Swinv2Backbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify hidden states
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16])

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))

        # verify backbone works with out_features=None
        config.out_features = None
        model = Swinv2Backbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4])

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = Swinv2ForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
        )

        # test greyscale images
        config.num_channels = 1
        model = Swinv2ForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size))

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = Swinv2ForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
208
class Swinv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
209
    all_model_classes = (
NielsRogge's avatar
NielsRogge committed
210
211
212
213
214
215
216
217
        (
            Swinv2Model,
            Swinv2ForImageClassification,
            Swinv2ForMaskedImageModeling,
            Swinv2Backbone,
        )
        if is_torch_available()
        else ()
218
    )
219
    pipeline_model_mapping = (
220
        {"image-feature-extraction": Swinv2Model, "image-classification": Swinv2ForImageClassification}
221
222
223
        if is_torch_available()
        else {}
    )
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = Swinv2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Swinv2Config, embed_dim=37)

    def test_config(self):
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
246
247
248
249
    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

250
251
252
253
254
    # TODO: check if this works again for PyTorch 2.x.y
    @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.")
    def test_multi_gpu_data_parallel_forward(self):
        pass

255
256
257
258
259
260
261
262
263
264
265
266
267
    @unittest.skip(reason="Swinv2 does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

NielsRogge's avatar
NielsRogge committed
268
269
270
271
272
273
274
275
276
277
278
279
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            expected_num_attentions = len(self.model_tester.depths)
            self.assertEqual(len(attentions), expected_num_attentions)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            window_size_squared = config.window_size**2
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), expected_num_attentions)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

NielsRogge's avatar
NielsRogge committed
324
325
            # also another +1 for reshaped_hidden_states
            added_hidden_states = 1 if model_class.__name__ == "Swinv2Backbone" else 2
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), expected_num_attentions)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )

    def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
        model = model_class(config)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

        hidden_states = outputs.hidden_states

        expected_num_layers = getattr(
            self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
        )
        self.assertEqual(len(hidden_states), expected_num_layers)

        # Swinv2 has a different seq_length
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )

        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])

        self.assertListEqual(
            list(hidden_states[0].shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )

NielsRogge's avatar
NielsRogge committed
366
367
368
        if not model_class.__name__ == "Swinv2Backbone":
            reshaped_hidden_states = outputs.reshaped_hidden_states
            self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
369

NielsRogge's avatar
NielsRogge committed
370
371
372
373
374
375
376
377
            batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
            reshaped_hidden_states = (
                reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
            )
            self.assertListEqual(
                list(reshaped_hidden_states.shape[-2:]),
                [num_patches, self.model_tester.embed_dim],
            )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

    def test_hidden_states_output_with_padding(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.patch_size = 3

        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )

        padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
        padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = Swinv2Model.from_pretrained(model_name)
            self.assertIsNotNone(model)

NielsRogge's avatar
NielsRogge committed
439
440
441
442
    @unittest.skip(reason="Swinv2 does not support feedforward chunking yet")
    def test_feed_forward_chunking(self):
        pass

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )


@require_vision
@require_torch
class Swinv2ModelIntegrationTest(unittest.TestCase):
    @cached_property
462
    def default_image_processor(self):
463
        return (
464
            AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
465
466
467
468
469
470
471
472
473
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = Swinv2ForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256").to(
            torch_device
        )
474
        image_processor = self.default_image_processor
475
476

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
477
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
478
479
480
481
482
483
484
485
486
487

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)
        expected_slice = torch.tensor([-0.3947, -0.4306, 0.0026]).to(torch_device)
        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
488
489
490
491
492
493
494
495
496


@require_torch
class Swinv2BackboneTest(unittest.TestCase, BackboneTesterMixin):
    all_model_classes = (Swinv2Backbone,) if is_torch_available() else ()
    config_class = Swinv2Config

    def setUp(self):
        self.model_tester = Swinv2ModelTester(self)