test_modeling_regnet.py 9.65 KB
Newer Older
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch RegNet model. """


import unittest

from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
26
from ...test_pipeline_mixin import PipelineTesterMixin
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
27
28
29
30
31
32
33
34
35
36
37
38
39


if is_torch_available():
    import torch
    from torch import nn

    from transformers import RegNetForImageClassification, RegNetModel
    from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

40
    from transformers import AutoImageProcessor
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120


class RegNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=3,
        image_size=32,
        num_channels=3,
        embeddings_size=10,
        hidden_sizes=[10, 20, 30, 40],
        depths=[1, 1, 2, 1],
        is_training=True,
        use_labels=True,
        hidden_act="relu",
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.embeddings_size = embeddings_size
        self.hidden_sizes = hidden_sizes
        self.depths = depths
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_act = hidden_act
        self.num_labels = num_labels
        self.scope = scope
        self.num_stages = len(hidden_sizes)

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return RegNetConfig(
            num_channels=self.num_channels,
            embeddings_size=self.embeddings_size,
            hidden_sizes=self.hidden_sizes,
            depths=self.depths,
            hidden_act=self.hidden_act,
            num_labels=self.num_labels,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = RegNetModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected last hidden states: B, C, H // 32, W // 32
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
        )

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = RegNetForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
121
class RegNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
122
123
124
125
126
127
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as RegNet does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
128
    pipeline_model_mapping = (
129
        {"image-feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification}
130
131
132
        if is_torch_available()
        else {}
    )
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False

    def setUp(self):
        self.model_tester = RegNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=RegNetConfig, has_text_modality=False)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    @unittest.skip(reason="RegNet does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="RegNet does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            for name, module in model.named_modules():
                if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
                    self.assertTrue(
                        torch.all(module.weight == 1),
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )
                    self.assertTrue(
                        torch.all(module.bias == 0),
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_stages = self.model_tester.num_stages
            self.assertEqual(len(hidden_states), expected_num_stages + 1)

            # RegNet's feature maps are of shape (batch_size, num_channels, height, width)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.image_size // 2, self.model_tester.image_size // 2],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        layers_type = ["basic", "bottleneck"]
        for model_class in self.all_model_classes:
            for layer_type in layers_type:
                config.layer_type = layer_type
                inputs_dict["output_hidden_states"] = True
                check_hidden_states_output(inputs_dict, config, model_class)

                # check that output_hidden_states also work using config
                del inputs_dict["output_hidden_states"]
                config.output_hidden_states = True

                check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = RegNetModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class RegNetModelIntegrationTest(unittest.TestCase):
    @cached_property
238
    def default_image_processor(self):
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
239
        return (
240
            AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
241
242
243
244
245
246
247
248
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)

249
        image_processor = self.default_image_processor
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
250
        image = prepare_img()
251
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
Francesco Saverio Zuppichini's avatar
Francesco Saverio Zuppichini committed
252
253
254
255
256
257
258
259
260
261
262
263

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-0.4180, -1.5051, -3.4836]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))