"mmdet/models/task_modules/samplers/pseudo_sampler.py" did not exist on "1189a8adcc55e3a2530ce8b716c55a67b2d53af1"
test_modeling_tf_auto.py 12.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Matt's avatar
Matt committed
16
17
from __future__ import annotations

18
19
import copy
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import unittest
thomwolf's avatar
thomwolf committed
21

Kamal Raj's avatar
Kamal Raj committed
22
23
24
25
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, TapasConfig, is_tf_available
from transformers.testing_utils import (
    DUMMY_UNKNOWN_IDENTIFIER,
    SMALL_MODEL_IDENTIFIER,
26
    RequestCounter,
Kamal Raj's avatar
Kamal Raj committed
27
28
29
30
    require_tensorflow_probability,
    require_tf,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
from ..bert.test_modeling_bert import BertModelTester
33

34

35
if is_tf_available():
36
37
    from transformers import (
        TFAutoModel,
38
39
        TFAutoModelForCausalLM,
        TFAutoModelForMaskedLM,
thomwolf's avatar
thomwolf committed
40
        TFAutoModelForPreTraining,
41
42
43
        TFAutoModelForQuestionAnswering,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSequenceClassification,
Kamal Raj's avatar
Kamal Raj committed
44
        TFAutoModelForTableQuestionAnswering,
45
        TFAutoModelForTokenClassification,
46
47
        TFAutoModelWithLMHead,
        TFBertForMaskedLM,
48
        TFBertForPreTraining,
49
        TFBertForQuestionAnswering,
50
51
        TFBertForSequenceClassification,
        TFBertModel,
52
53
        TFFunnelBaseModel,
        TFFunnelModel,
54
        TFGPT2LMHeadModel,
55
        TFRobertaForMaskedLM,
56
        TFT5ForConditionalGeneration,
Kamal Raj's avatar
Kamal Raj committed
57
        TFTapasForQuestionAnswering,
58
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    from transformers.models.auto.modeling_tf_auto import (
60
61
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
62
63
64
65
        TF_MODEL_FOR_PRETRAINING_MAPPING,
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
66
        TF_MODEL_MAPPING,
67
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
    from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
Kamal Raj's avatar
Kamal Raj committed
71
    from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
72
73


74
75
76
77
78
79
80
81
82
83
class NewModelConfig(BertConfig):
    model_type = "new-model"


if is_tf_available():

    class TFNewModel(TFBertModel):
        config_class = NewModelConfig


84
@require_tf
thomwolf's avatar
thomwolf committed
85
class TFAutoModelTest(unittest.TestCase):
86
    @slow
thomwolf's avatar
thomwolf committed
87
    def test_model_from_pretrained(self):
88
        model_name = "google-bert/bert-base-cased"
Lysandre Debut's avatar
Lysandre Debut committed
89
90
91
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)
92

Lysandre Debut's avatar
Lysandre Debut committed
93
94
95
        model = TFAutoModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, TFBertModel)
thomwolf's avatar
thomwolf committed
96

thomwolf's avatar
thomwolf committed
97
98
    @slow
    def test_model_for_pretraining_from_pretrained(self):
99
        model_name = "google-bert/bert-base-cased"
Lysandre Debut's avatar
Lysandre Debut committed
100
101
102
103
104
105
106
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)

        model = TFAutoModelForPreTraining.from_pretrained(model_name)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, TFBertForPreTraining)
thomwolf's avatar
thomwolf committed
107

108
109
110
111
112
113
114
115
116
117
118
119
    @slow
    def test_model_for_causal_lm(self):
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = TFAutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFGPT2LMHeadModel)

120
    @slow
thomwolf's avatar
thomwolf committed
121
    def test_lmhead_model_from_pretrained(self):
122
        for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
123
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
124
125
126
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

127
            model = TFAutoModelWithLMHead.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
128
129
130
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForMaskedLM)

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    @slow
    def test_model_for_masked_lm(self):
        for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFT5ForConditionalGeneration)

155
    @slow
thomwolf's avatar
thomwolf committed
156
    def test_sequence_classification_model_from_pretrained(self):
157
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
158
        for model_name in ["google-bert/bert-base-uncased"]:
159
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
160
161
162
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

163
            model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
164
165
166
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForSequenceClassification)

167
    @slow
thomwolf's avatar
thomwolf committed
168
    def test_question_answering_model_from_pretrained(self):
169
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
170
        for model_name in ["google-bert/bert-base-uncased"]:
171
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
172
173
174
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

175
            model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
176
177
178
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForQuestionAnswering)

Kamal Raj's avatar
Kamal Raj committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    @slow
    @require_tensorflow_probability
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = TFAutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFTapasForQuestionAnswering)

Julien Chaumond's avatar
Julien Chaumond committed
194
    def test_from_pretrained_identifier(self):
195
        model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
196
        self.assertIsInstance(model, TFBertForMaskedLM)
Julien Plu's avatar
Julien Plu committed
197
198
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
199
200

    def test_from_identifier_from_model_type(self):
201
        model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
202
        self.assertIsInstance(model, TFRobertaForMaskedLM)
Julien Plu's avatar
Julien Plu committed
203
204
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
205

206
207
208
209
210
211
212
213
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, TFFunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = TFAutoModel.from_config(config)
Matt's avatar
Matt committed
214
        model.build_in_name_scope()
215

216
217
218
219
220
221
222
        self.assertIsInstance(model, TFFunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = TFAutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, TFFunnelBaseModel)

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    def test_new_model_registration(self):
        try:
            AutoConfig.register("new-model", NewModelConfig)

            auto_classes = [
                TFAutoModel,
                TFAutoModelForCausalLM,
                TFAutoModelForMaskedLM,
                TFAutoModelForPreTraining,
                TFAutoModelForQuestionAnswering,
                TFAutoModelForSequenceClassification,
                TFAutoModelForTokenClassification,
            ]

            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, TFNewModel)
                    auto_class.register(NewModelConfig, TFNewModel)
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, TFBertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
                    config = NewModelConfig(**tiny_config.to_dict())
250

251
                    model = auto_class.from_config(config)
Matt's avatar
Matt committed
252
                    model.build_in_name_scope()
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
                    self.assertIsInstance(model, TFNewModel)

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
                        self.assertIsInstance(new_model, TFNewModel)

        finally:
            if "new-model" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["new-model"]
            for mapping in (
                TF_MODEL_MAPPING,
                TF_MODEL_FOR_PRETRAINING_MAPPING,
                TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                TF_MODEL_FOR_CAUSAL_LM_MAPPING,
                TF_MODEL_FOR_MASKED_LM_MAPPING,
            ):
                if NewModelConfig in mapping._extra_content:
                    del mapping._extra_content[NewModelConfig]
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = TFAutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = TFAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
291
            "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
292
293
294
295
296
297
        ):
            _ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_pt_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"):
            _ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
298
299
300
301
302
303

    def test_cached_model_has_minimum_calls_to_head(self):
        # Make sure we have cached the model.
        _ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
304
305
306
        self.assertEqual(counter["GET"], 0)
        self.assertEqual(counter["HEAD"], 1)
        self.assertEqual(counter.total_calls, 1)
307
308
309
310
311

        # With a sharded checkpoint
        _ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
        with RequestCounter() as counter:
            _ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
312
313
314
        self.assertEqual(counter["GET"], 0)
        self.assertEqual(counter["HEAD"], 1)
        self.assertEqual(counter.total_calls, 1)