test_modeling_hubert.py 38.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Hubert model. """


import math
19
20
21
import os
import pickle
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
22
23
import unittest

24
25
import pytest

26
from transformers import HubertConfig, is_torch_available
27
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
28
from transformers.utils import is_torch_fx_available
Patrick von Platen's avatar
Patrick von Platen committed
29

Yih-Dar's avatar
Yih-Dar committed
30
31
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
32
33
34
35
36
37
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
38
from ...test_pipeline_mixin import PipelineTesterMixin
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43


if is_torch_available():
    import torch

44
45
46
47
48
49
50
    from transformers import (
        HubertForCTC,
        HubertForSequenceClassification,
        HubertModel,
        Wav2Vec2FeatureExtractor,
        Wav2Vec2Processor,
    )
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    from transformers.models.hubert.modeling_hubert import _compute_mask_indices

53
54
55
if is_torch_fx_available():
    from transformers.utils.fx import symbolic_trace

Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

class HubertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
74
        num_hidden_layers=2,
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=False,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
117
        input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
Patrick von Platen's avatar
Patrick von Platen committed
118
119
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])

120
121
122
123
124
125
        config = self.get_config()

        return config, input_values, attention_mask

    def get_config(self):
        return HubertConfig(
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
144
            do_stable_layer_norm=self.do_stable_layer_norm,
Patrick von Platen's avatar
Patrick von Platen committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        )

    def create_and_check_model(self, config, input_values, attention_mask):
        model = HubertModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

    def create_and_check_batch_inference(self, config, input_values, *args):
        # test does not pass for models making use of `group_norm`
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = HubertModel(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

    def check_ctc_loss(self, config, input_values, *args):
        model = HubertForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        model.config.ctc_loss_reduction = "sum"
202
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
Patrick von Platen's avatar
Patrick von Platen committed
203
204

        model.config.ctc_loss_reduction = "mean"
205
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
Patrick von Platen's avatar
Patrick von Platen committed
206

207
208
        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))
Patrick von Platen's avatar
Patrick von Platen committed
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def check_seq_classifier_loss(self, config, input_values, *args):
        model = HubertForSequenceClassification(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
        unmasked_loss = model(input_values, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(masked_loss, float))
        self.parent.assertTrue(isinstance(unmasked_loss, float))
        self.parent.assertTrue(masked_loss != unmasked_loss)

    def check_ctc_training(self, config, input_values, *args):
Patrick von Platen's avatar
Patrick von Platen committed
236
237
238
239
240
241
        config.ctc_zero_infinity = True
        model = HubertForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
242
        model.freeze_feature_encoder()
Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
246
247
248
249
250
251
252
253
254

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
Susnato Dhar's avatar
Susnato Dhar committed
255
256
                # it's important that we make sure that target lengths are at least
                # one shorter than logit lengths to prevent -inf
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
260
261
262
263
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def check_seq_classifier_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = HubertForSequenceClassification(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = HubertForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

        with pytest.raises(ValueError):
            model(input_values, labels=labels)

Patrick von Platen's avatar
Patrick von Platen committed
301
302
303
304
305
306
307
    def prepare_config_and_inputs_for_common(self):
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
        return config, inputs_dict


@require_torch
308
class HubertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
309
    all_model_classes = (HubertForCTC, HubertForSequenceClassification, HubertModel) if is_torch_available() else ()
310
311
312
313
314
315
316
317
318
    pipeline_model_mapping = (
        {
            "audio-classification": HubertForSequenceClassification,
            "automatic-speech-recognition": HubertForCTC,
            "feature-extraction": HubertModel,
        }
        if is_torch_available()
        else {}
    )
319
    fx_compatible = True
Patrick von Platen's avatar
Patrick von Platen committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    test_pruning = False
    test_headmasking = False

    def setUp(self):
        self.model_tester = HubertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

338
    def test_seq_classifier_loss_inference(self):
Patrick von Platen's avatar
Patrick von Platen committed
339
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
340
341
342
343
344
345
346
347
348
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
349

350
351
352
353
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    # Hubert has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Hubert cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Hubert has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                uniform_init_parms = [
                    "conv.weight",
422
                    "conv.parametrizations.weight",
Patrick von Platen's avatar
Patrick von Platen committed
423
424
425
426
                    "masked_spec_embed",
                    "quantizer.weight_proj.weight",
                ]
                if param.requires_grad:
427
                    if any(x in name for x in uniform_init_parms):
Patrick von Platen's avatar
Patrick von Platen committed
428
429
430
431
432
433
434
435
436
437
438
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    # Hubert cannot be TorchScripted because of torch.nn.utils.weight_norm
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
                        "decoder_input_ids",
                        "input_features",
                        "input_ids",
                        "input_values",
                    ]
                    if labels is not None:
                        input_names.append("labels")

                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = list(filtered_inputs.keys())

                    model_output = model(**filtered_inputs)

                    traced_model = symbolic_trace(model, input_names)
                    traced_output = traced_model(**filtered_inputs)
                else:
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
                    ]

                    labels = inputs.get("labels", None)
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
                    if labels is not None:
                        input_names.append("labels")
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")

                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = list(filtered_inputs.keys())

                    model_output = model(**filtered_inputs)

                    traced_model = symbolic_trace(model, input_names)
                    traced_output = traced_model(**filtered_inputs)

            except Exception as e:
                self.fail(f"Couldn't trace module: {e}")

            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
            num_outputs = len(model_output)

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )

            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

Patrick von Platen's avatar
Patrick von Platen committed
550
551
552
553
554
555
556
557
558
559
560
561
562
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)

563
564
565
566
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
567
568
569
570
571
572
573
574
    @slow
    def test_model_from_pretrained(self):
        model = HubertModel.from_pretrained("facebook/hubert-base-ls960")
        self.assertIsNotNone(model)


@require_torch
class HubertRobustModelTest(ModelTesterMixin, unittest.TestCase):
575
    all_model_classes = (HubertForCTC, HubertForSequenceClassification, HubertModel) if is_torch_available() else ()
Patrick von Platen's avatar
Patrick von Platen committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    test_pruning = False
    test_headmasking = False

    def setUp(self):
        self.model_tester = HubertModelTester(
            self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
        )
        self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

600
601
602
603
604
    def test_seq_classifier_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
Patrick von Platen's avatar
Patrick von Platen committed
605
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
606
607
608
609
610
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
611

612
613
614
615
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    # Hubert has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Hubert cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Hubert has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                uniform_init_parms = [
                    "conv.weight",
684
                    "conv.parametrizations.weight",
Patrick von Platen's avatar
Patrick von Platen committed
685
686
687
688
                    "masked_spec_embed",
                    "quantizer.weight_proj.weight",
                ]
                if param.requires_grad:
689
                    if any(x in name for x in uniform_init_parms):
Patrick von Platen's avatar
Patrick von Platen committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)

714
715
716
717
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    @slow
    def test_model_from_pretrained(self):
        model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
        self.assertIsNotNone(model)


@require_torch
class HubertUtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

732
733
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
734
735
736
737
738
739
740
741
742

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

743
744
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
745
746
747
748
749
750
751
752
753
754
755
756
757

        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)


@require_torch
@require_soundfile
@slow
class HubertModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
        from datasets import load_dataset

Patrick von Platen's avatar
Patrick von Platen committed
758
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
759
        # automatic decoding with librispeech
Patrick von Platen's avatar
Patrick von Platen committed
760
761
762
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
Patrick von Platen's avatar
Patrick von Platen committed
763

764
        return [x["array"] for x in speech_samples]
Patrick von Platen's avatar
Patrick von Platen committed
765

766
767
768
769
770
771
772
    def _load_superb(self, task, num_samples):
        from datasets import load_dataset

        ds = load_dataset("anton-l/superb_dummy", task, split="test")

        return ds[:num_samples]

Patrick von Platen's avatar
Patrick von Platen committed
773
    def test_inference_ctc_batched(self):
774
775
776
        model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft", torch_dtype=torch.float16).to(
            torch_device
        )
Patrick von Platen's avatar
Patrick von Platen committed
777
778
779
780
        processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft", do_lower_case=True)

        input_speech = self._load_datasamples(2)

Lysandre Debut's avatar
Lysandre Debut committed
781
        inputs = processor(input_speech, return_tensors="pt", padding=True)
Patrick von Platen's avatar
Patrick von Platen committed
782

783
        input_values = inputs.input_values.half().to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
784
785
786
787
788
789
790
791
792
793
794
795
796
        attention_mask = inputs.attention_mask.to(torch_device)

        with torch.no_grad():
            logits = model(input_values, attention_mask=attention_mask).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
797
798

    def test_inference_keyword_spotting(self):
799
800
801
        model = HubertForSequenceClassification.from_pretrained(
            "superb/hubert-base-superb-ks", torch_dtype=torch.float16
        ).to(torch_device)
802
803
804
805
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks")
        input_data = self._load_superb("ks", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

806
        input_values = inputs.input_values.half().to(torch_device)
807
808
809
810
811
812
813
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [2, 6, 10, 9]
        # s3prl logits for the same batch
814
        expected_logits = torch.tensor([7.6692, 17.7795, 11.1562, 11.8232], dtype=torch.float16, device=torch_device)
815
816

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
817
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=3e-2))
818
819

    def test_inference_intent_classification(self):
820
821
822
        model = HubertForSequenceClassification.from_pretrained(
            "superb/hubert-base-superb-ic", torch_dtype=torch.float16
        ).to(torch_device)
823
824
825
826
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ic")
        input_data = self._load_superb("ic", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

827
        input_values = inputs.input_values.half().to(torch_device)
828
829
830
831
832
833
834
835
836
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)

        predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
        predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
        predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)

        expected_labels_action = [1, 0, 4, 3]
837
838
839
        expected_logits_action = torch.tensor(
            [5.9052, 12.5865, 4.4840, 10.0240], dtype=torch.float16, device=torch_device
        )
840
        expected_labels_object = [1, 10, 3, 4]
841
842
843
        expected_logits_object = torch.tensor(
            [5.5316, 11.7946, 8.1672, 23.2415], dtype=torch.float16, device=torch_device
        )
844
        expected_labels_location = [0, 0, 0, 1]
845
846
847
        expected_logits_location = torch.tensor(
            [5.2053, 8.9577, 10.0447, 8.1481], dtype=torch.float16, device=torch_device
        )
848
849
850
851
852
853
854
855
856
857
858

        self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
        self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
        self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)

        # TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572
        self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=3e-1))
        self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=3e-1))
        self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=3e-1))

    def test_inference_speaker_identification(self):
859
860
861
        model = HubertForSequenceClassification.from_pretrained(
            "superb/hubert-base-superb-sid", torch_dtype=torch.float16
        ).to(torch_device)
862
863
864
865
866
867
868
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-sid")
        input_data = self._load_superb("si", 4)

        output_logits = []
        with torch.no_grad():
            for example in input_data["speech"]:
                input = processor(example, return_tensors="pt", padding=True)
869
                output = model(input.input_values.half().to(torch_device), attention_mask=None)
870
871
872
873
874
875
                output_logits.append(output.logits[0])
        output_logits = torch.stack(output_logits)
        predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)

        expected_labels = [5, 1, 1, 3]
        # s3prl logits for the same batch
876
877
878
        expected_logits = torch.tensor(
            [78231.5547, 123166.6094, 122785.4141, 84851.2969], dtype=torch.float16, device=torch_device
        )
879
880
881
882
883
884

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        # TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=10))

    def test_inference_emotion_recognition(self):
885
886
887
        model = HubertForSequenceClassification.from_pretrained(
            "superb/hubert-base-superb-er", torch_dtype=torch.float16
        ).to(torch_device)
888
889
890
891
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-er")
        input_data = self._load_superb("er", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

892
        input_values = inputs.input_values.half().to(torch_device)
893
894
895
896
897
898
899
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [1, 1, 2, 2]
        # s3prl logits for the same batch
900
        expected_logits = torch.tensor([2.8384, 2.3389, 3.8564, 4.5558], dtype=torch.float16, device=torch_device)
901
902
903
904

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        # TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-1))
Anton Lozhkov's avatar
Anton Lozhkov committed
905
906

    def test_inference_distilhubert(self):
907
908
        model = HubertModel.from_pretrained("ntu-spml/distilhubert").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("ntu-spml/distilhubert")
Anton Lozhkov's avatar
Anton Lozhkov committed
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

        # TODO: can't test on batched inputs due to incompatible padding https://github.com/pytorch/fairseq/pull/3572
        input_speech = self._load_datasamples(1)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)

        with torch.no_grad():
            outputs = model(input_values).last_hidden_state

        # expected outputs taken from the original SEW implementation
        expected_outputs_first = torch.tensor(
            [
                [
                    [-0.3505, 0.1167, 0.0608, 0.1294],
                    [-0.3085, 0.0481, 0.1106, 0.0955],
                    [-0.3107, -0.0391, 0.0739, 0.1360],
                    [-0.2385, -0.1795, -0.0928, 0.2389],
                ]
            ],
            device=torch_device,
        )
        expected_outputs_last = torch.tensor(
            [
                [
                    [-0.0732, 0.0255, 0.0529, -0.1372],
                    [-0.0812, 0.1259, 0.0564, -0.0438],
                    [-0.0054, 0.0758, -0.0002, -0.1617],
                    [0.0133, -0.0320, -0.0687, 0.0062],
                ]
            ],
            device=torch_device,
        )
        expected_output_sum = -3776.0730

        self.assertTrue(torch.allclose(outputs[:, :4, :4], expected_outputs_first, atol=5e-3))
        self.assertTrue(torch.allclose(outputs[:, -4:, -4:], expected_outputs_last, atol=5e-3))
        self.assertTrue(abs(outputs.sum() - expected_output_sum) < 0.1)