"examples/research_projects/rag/test_distributed_retriever.py" did not exist on "cf1c88e0921243e760d306e63a5938e1bac880f3"
test_modeling_tf_bert.py 30 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import BertConfig, is_tf_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
22

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Yih-Dar's avatar
Yih-Dar committed
26
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin
thomwolf's avatar
thomwolf committed
27

thomwolf's avatar
thomwolf committed
28

thomwolf's avatar
thomwolf committed
29
if is_tf_available():
thomwolf's avatar
thomwolf committed
30
    import tensorflow as tf
31

32
    from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING
Sylvain Gugger's avatar
Sylvain Gugger committed
33
    from transformers.models.bert.modeling_tf_bert import (
34
        TFBertForMaskedLM,
35
        TFBertForMultipleChoice,
36
37
        TFBertForNextSentencePrediction,
        TFBertForPreTraining,
38
        TFBertForQuestionAnswering,
39
40
        TFBertForSequenceClassification,
        TFBertForTokenClassification,
41
42
        TFBertLMHeadModel,
        TFBertModel,
43
    )
thomwolf's avatar
thomwolf committed
44

thomwolf's avatar
thomwolf committed
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
class TFBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
thomwolf's avatar
thomwolf committed
94

95
96
97
98
99
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
100
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
101

102
103
104
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
105

106
107
108
109
110
111
112
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
thomwolf's avatar
thomwolf committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
127

128
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
thomwolf's avatar
thomwolf committed
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

157
    def create_and_check_model(
158
159
160
161
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
162
        result = model(inputs)
thomwolf's avatar
thomwolf committed
163

164
        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
165
        result = model(inputs)
thomwolf's avatar
thomwolf committed
166

Sylvain Gugger's avatar
Sylvain Gugger committed
167
        result = model(input_ids)
thomwolf's avatar
thomwolf committed
168

169
170
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
thomwolf's avatar
thomwolf committed
171

172
    def create_and_check_causal_lm_base_model(
173
174
175
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.is_decoder = True
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        model = TFBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFBertModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)

        # Also check the case where encoder outputs are not passed
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_causal_lm_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.is_decoder = True

227
228
229
230
231
232
        model = TFBertLMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
233
        prediction_scores = model(inputs)["logits"]
234
235
236
237
        self.parent.assertListEqual(
            list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    def create_and_check_causal_lm_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFBertLMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)

        prediction_scores = result["logits"]
        self.parent.assertListEqual(
            list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

    def create_and_check_causal_lm_model_past(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFBertLMHeadModel(config=config)

        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)

        output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_model_past_with_attn_mask(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFBertLMHeadModel(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
        outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        past_key_values = outputs.past_key_values

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat(
            [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
            axis=1,
        )

        output_from_no_past = model(
            next_input_ids,
            attention_mask=attn_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFBertLMHeadModel(config=config)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFBertLMHeadModel(config=config)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        encoder_hidden_states = encoder_hidden_states[:1, :, :]
        encoder_attention_mask = encoder_attention_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_for_masked_lm(
493
494
495
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForMaskedLM(config=config)
496
497
498
499
500
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
501
        result = model(inputs)
502
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
thomwolf's avatar
thomwolf committed
503

504
    def create_and_check_for_next_sequence_prediction(
505
506
507
508
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForNextSentencePrediction(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
509
        result = model(inputs)
510
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
thomwolf's avatar
thomwolf committed
511

512
    def create_and_check_for_pretraining(
513
514
515
516
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
517
        result = model(inputs)
518
519
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
thomwolf's avatar
thomwolf committed
520

521
    def create_and_check_for_sequence_classification(
522
523
524
525
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForSequenceClassification(config=config)
526
527
528
529
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
530
        }
531

Sylvain Gugger's avatar
Sylvain Gugger committed
532
        result = model(inputs)
533
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
thomwolf's avatar
thomwolf committed
534

535
    def create_and_check_for_multiple_choice(
536
537
538
539
540
541
542
543
544
545
546
547
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFBertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
548
        result = model(inputs)
549
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
thomwolf's avatar
thomwolf committed
550

551
    def create_and_check_for_token_classification(
552
553
554
555
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForTokenClassification(config=config)
556
557
558
559
560
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
561
        result = model(inputs)
562
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
thomwolf's avatar
thomwolf committed
563

564
    def create_and_check_for_question_answering(
565
566
567
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForQuestionAnswering(config=config)
568
569
570
571
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
572
        }
573

Sylvain Gugger's avatar
Sylvain Gugger committed
574
        result = model(inputs)
575
576
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
thomwolf's avatar
thomwolf committed
577

578
579
580
581
582
583
584
585
586
587
588
589
590
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict
thomwolf's avatar
thomwolf committed
591
592


593
@require_tf
594
class TFBertModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
595
596
597
598
    all_model_classes = (
        (
            TFBertModel,
            TFBertForMaskedLM,
Lysandre Debut's avatar
Lysandre Debut committed
599
            TFBertLMHeadModel,
600
601
602
603
604
605
606
607
608
609
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
            TFBertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
610
611
612
613
614
615
616
617
618
619
620
621
622
    pipeline_model_mapping = (
        {
            "feature-extraction": TFBertModel,
            "fill-mask": TFBertForMaskedLM,
            "question-answering": TFBertForQuestionAnswering,
            "text-classification": TFBertForSequenceClassification,
            "text-generation": TFBertLMHeadModel,
            "token-classification": TFBertForTokenClassification,
            "zero-shot": TFBertForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
623
    test_head_masking = False
624
625
    test_onnx = True
    onnx_min_opset = 10
thomwolf's avatar
thomwolf committed
626

627
628
629
630
631
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
632
            if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
633
634
635
636
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)

        return inputs_dict

thomwolf's avatar
thomwolf committed
637
    def setUp(self):
638
        self.model_tester = TFBertModelTester(self)
thomwolf's avatar
thomwolf committed
639
640
641
642
643
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

644
645
    def test_model(self):
        """Test the base model"""
thomwolf's avatar
thomwolf committed
646
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_causal_lm_base_model(self):
        """Test the base model of the causal LM model

        is_deocder=True, no cross_attention, no encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)

    def test_model_as_decoder(self):
        """Test the base model as a decoder (of an encoder-decoder architecture)

        is_deocder=True + cross_attention + pass encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
thomwolf's avatar
thomwolf committed
664
665
666

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
667
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
668

669
    def test_for_causal_lm(self):
670
        """Test the causal LM model"""
671
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        self.model_tester.create_and_check_causal_lm_model(*config_and_inputs)

    def test_causal_lm_model_as_decoder(self):
        """Test the causal LM model as a decoder"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs)

    def test_causal_lm_model_past(self):
        """Test causal LM model with `past_key_values`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs)

    def test_causal_lm_model_past_with_attn_mask(self):
        """Test the causal LM model with `past_key_values` and `attention_mask`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs)

    def test_causal_lm_model_past_with_large_inputs(self):
        """Test the causal LM model with `past_key_values` and a longer decoder sequence length"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs)

    def test_decoder_model_past_with_large_inputs(self):
        """Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
698

thomwolf's avatar
thomwolf committed
699
700
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
701
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
702
703
704

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
705
        self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
706
707
708

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
709
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
710
711
712

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
713
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
714
715
716

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
717
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
718
719
720

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
721
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
722
723

    def test_model_from_pretrained(self):
Julien Plu's avatar
Julien Plu committed
724
725
726
        model = TFBertModel.from_pretrained("jplu/tiny-tf-bert-random")
        self.assertIsNotNone(model)

727
728
729
730
731
732
733
734
735
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        list_lm_models = [TFBertForMaskedLM, TFBertForPreTraining, TFBertLMHeadModel]

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in list_lm_models:
736
                x = model.get_output_embeddings()
737
                assert isinstance(x, tf.keras.layers.Layer)
738
739
740
741
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
742
            else:
743
                x = model.get_output_embeddings()
744
                assert x is None
745
746
                name = model.get_bias()
                assert name is None
747

Julien Plu's avatar
Julien Plu committed
748
749
    def test_custom_load_tf_weights(self):
        model, output_loading_info = TFBertForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
750
            "jplu/tiny-tf-bert-random", output_loading_info=True
Julien Plu's avatar
Julien Plu committed
751
        )
Julien Plu's avatar
Julien Plu committed
752
        self.assertEqual(sorted(output_loading_info["unexpected_keys"]), [])
Julien Plu's avatar
Julien Plu committed
753
754
        for layer in output_loading_info["missing_keys"]:
            self.assertTrue(layer.split("_")[0] in ["dropout", "classifier"])
755

756
757
758
759
760
    # TODO (Joao): fix me
    @unittest.skip("Onnx compliancy broke with TF 2.10")
    def test_onnx_compliancy(self):
        pass

761

762
@require_tf
763
764
765
766
767
768
769
class TFBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFBertForPreTraining.from_pretrained("lysandre/tiny-bert-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

LysandreJik's avatar
LysandreJik committed
770
        expected_shape = [1, 6, 32000]
771
772
773
774
775
776
777
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3, :3])

        expected_slice = tf.constant(
            [
                [
LysandreJik's avatar
LysandreJik committed
778
779
780
                    [-0.05243197, -0.04498899, 0.05512108],
                    [-0.07444685, -0.01064632, 0.04352357],
                    [-0.05020351, 0.05530146, 0.00700043],
781
782
783
784
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)