"init_dummy_model_dac.py" did not exist on "d0140745a5d099609d2497a9e869649bef1d10d3"
test_modeling_vit_mae.py 24 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViTMAE model. """


import inspect
import math
Sayak Paul's avatar
Sayak Paul committed
20
import os
NielsRogge's avatar
NielsRogge committed
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np

from transformers import ViTMAEConfig
Sayak Paul's avatar
Sayak Paul committed
27
from transformers.testing_utils import is_pt_tf_cross_test, require_torch, require_vision, slow, torch_device
28
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
29

30
31
from ..test_configuration_common import ConfigTester
from ..test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
NielsRogge's avatar
NielsRogge committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137


if is_torch_available():
    import torch
    from torch import nn

    from transformers import ViTMAEForPreTraining, ViTMAEModel
    from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST, to_2tuple


if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


class ViTMAEModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTMAEConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = ViTMAEModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
        # (we add 1 for the [CLS] token)
        image_size = to_2tuple(self.image_size)
        patch_size = to_2tuple(self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        expected_seq_len = int(math.ceil((1 - config.mask_ratio) * (num_patches + 1)))
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, self.hidden_size))

    def create_and_check_for_pretraining(self, config, pixel_values, labels):
        model = ViTMAEForPreTraining(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected sequence length = num_patches
        image_size = to_2tuple(self.image_size)
        patch_size = to_2tuple(self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        expected_seq_len = num_patches
138
        expected_num_channels = self.patch_size**2 * self.num_channels
NielsRogge's avatar
NielsRogge committed
139
140
141
142
        self.parent.assertEqual(result.logits.shape, (self.batch_size, expected_seq_len, expected_num_channels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
Sayak Paul's avatar
Sayak Paul committed
143
        config, pixel_values, labels = config_and_inputs
NielsRogge's avatar
NielsRogge committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class ViTMAEModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ViTMAEModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # ViTMAE does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        # in ViTMAE, the seq_len equals (number of patches + 1) * (1 - mask_ratio), rounded above
        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        seq_len = int(math.ceil((1 - config.mask_ratio) * (num_patches + 1)))
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            # ViTMAE has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
            seq_length = int(math.ceil((1 - config.mask_ratio) * (num_patches + 1)))

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Sayak Paul's avatar
Sayak Paul committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    # overwrite from common since ViTMAEForPretraining has random masking, we need to fix the noise
    # to generate masks during test
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

        # make masks reproducible
        np.random.seed(2)

        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        num_patches = int((config.image_size // config.patch_size) ** 2)
        noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches))
        pt_noise = torch.from_numpy(noise).to(device=torch_device)
        tf_noise = tf.constant(noise)

        def prepare_tf_inputs_from_pt_inputs(pt_inputs_dict):

            tf_inputs_dict = {}
            for key, tensor in pt_inputs_dict.items():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)

            return tf_inputs_dict

        def check_outputs(tf_outputs, pt_outputs, model_class, names):
            """
            Args:
                model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                    TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Currently unused, but it could make
                    debugging easier and faster.

                names: A string, or a tuple of strings. These specify what tf_outputs/pt_outputs represent in the model outputs.
                    Currently unused, but in the future, we could use this information to make the error message clearer
                    by giving the name(s) of the output tensor(s) with large difference(s) between PT and TF.
            """

            # Allow `list` because `(TF)TransfoXLModelOutput.mems` is a list of tensors.
            if type(tf_outputs) in [tuple, list]:
                self.assertEqual(type(tf_outputs), type(pt_outputs))
                self.assertEqual(len(tf_outputs), len(pt_outputs))
                if type(names) == tuple:
                    for tf_output, pt_output, name in zip(tf_outputs, pt_outputs, names):
                        check_outputs(tf_output, pt_output, model_class, names=name)
                elif type(names) == str:
                    for idx, (tf_output, pt_output) in enumerate(zip(tf_outputs, pt_outputs)):
                        check_outputs(tf_output, pt_output, model_class, names=f"{names}_{idx}")
                else:
                    raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
            elif isinstance(tf_outputs, tf.Tensor):
                self.assertTrue(isinstance(pt_outputs, torch.Tensor))

                tf_outputs = tf_outputs.numpy()
                if isinstance(tf_outputs, np.float32):
                    tf_outputs = np.array(tf_outputs, dtype=np.float32)
                pt_outputs = pt_outputs.detach().to("cpu").numpy()

                tf_nans = np.isnan(tf_outputs)
                pt_nans = np.isnan(pt_outputs)

                pt_outputs[tf_nans] = 0
                tf_outputs[tf_nans] = 0
                pt_outputs[pt_nans] = 0
                tf_outputs[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
                self.assertLessEqual(max_diff, 1e-5)
            else:
                raise ValueError(
                    f"`tf_outputs` should be a `tuple` or an instance of `tf.Tensor`. Got {type(tf_outputs)} instead."
                )

        def check_pt_tf_models(tf_model, pt_model, pt_inputs_dict):
            # we are not preparing a model with labels because of the formation
            # of the ViT MAE model

            # send pytorch model to the correct device
            pt_model.to(torch_device)

            # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
            pt_model.eval()

            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)

            # send pytorch inputs to the correct device
            pt_inputs_dict = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
            }

            # Original test: check without `labels`
            with torch.no_grad():
                pt_outputs = pt_model(**pt_inputs_dict, noise=pt_noise)
            tf_outputs = tf_model(tf_inputs_dict, noise=tf_noise)

            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(tf_keys, pt_keys)
            check_outputs(tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=tf_keys)

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions

            tf_model_class = getattr(transformers, tf_model_class_name)

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)

            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}

            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)

            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
                pt_model = pt_model.to(torch_device)

            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)

NielsRogge's avatar
NielsRogge committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    def test_save_load(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            # make random mask reproducible
            torch.manual_seed(2)
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
                model.to(torch_device)
                # make random mask reproducible
                torch.manual_seed(2)
                with torch.no_grad():
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))

                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    @unittest.skip(
        reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
    to get deterministic results."""
    )
    def test_determinism(self):
        pass

    @unittest.skip(
        reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
    to get deterministic results."""
    )
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(
        reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
    to get deterministic results."""
    )
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""")
    def test_model_outputs_equivalence(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViTMAEModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class ViTMAEModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return ViTFeatureExtractor.from_pretrained("facebook/vit-mae-base") if is_vision_available() else None

    @slow
    def test_inference_for_pretraining(self):
Sayak Paul's avatar
Sayak Paul committed
547
548
        # make random mask reproducible across the PT and TF model
        np.random.seed(2)
NielsRogge's avatar
NielsRogge committed
549
550
551
552
553
554
555

        model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

Sayak Paul's avatar
Sayak Paul committed
556
557
558
559
560
561
        # prepare a noise vector that will be also used for testing the TF model
        # (this way we can ensure that the PT and TF models operate on the same inputs)
        vit_mae_config = ViTMAEConfig()
        num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2)
        noise = np.random.uniform(size=(1, num_patches))

NielsRogge's avatar
NielsRogge committed
562
563
        # forward pass
        with torch.no_grad():
564
            outputs = model(**inputs, noise=torch.from_numpy(noise).to(device=torch_device))
NielsRogge's avatar
NielsRogge committed
565
566
567
568
569

        # verify the logits
        expected_shape = torch.Size((1, 196, 768))
        self.assertEqual(outputs.logits.shape, expected_shape)

Sayak Paul's avatar
Sayak Paul committed
570
571
        expected_slice = torch.tensor(
            [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]
572
        )
NielsRogge's avatar
NielsRogge committed
573

574
        self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(torch_device), atol=1e-4))