test_data_collator.py 9.01 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
import unittest

from transformers import AutoTokenizer, is_torch_available
from transformers.testing_utils import require_torch


if is_torch_available():
    import torch

    from transformers import (
        DataCollatorForLanguageModeling,
12
        DataCollatorForNextSentencePrediction,
Sylvain Gugger's avatar
Sylvain Gugger committed
13
        DataCollatorForPermutationLanguageModeling,
14
        DataCollatorForSOP,
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
        GlueDataset,
        GlueDataTrainingArguments,
        LineByLineTextDataset,
18
        LineByLineWithSOPTextDataset,
Sylvain Gugger's avatar
Sylvain Gugger committed
19
        TextDataset,
20
        TextDatasetForNextSentencePrediction,
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
23
24
25
        default_data_collator,
    )


PATH_SAMPLE_TEXT = "./tests/fixtures/sample_text.txt"
26
PATH_SAMPLE_TEXT_DIR = "./tests/fixtures/tests_samples/wiki_text"
Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
    def test_default_with_dict(self):
        features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # Features can already be tensors
        features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

        # Labels can already be tensors
        features = [{"label": torch.tensor(i), "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

    def test_default_with_no_labels(self):
        features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

    def test_default_classification(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
        )
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
        data_collator = default_data_collator
        batch = data_collator(dataset.features)
        self.assertEqual(batch["labels"].dtype, torch.long)

    def test_default_regression(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
            task_name="sts-b", data_dir="./tests/fixtures/tests_samples/STS-B", overwrite_cache=True
        )
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
        data_collator = default_data_collator
        batch = data_collator(dataset.features)
        self.assertEqual(batch["labels"].dtype, torch.float)

    def test_lm_tokenizer_without_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        # ^ causal lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing on gpt2:
            data_collator(examples)

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))

    def test_lm_tokenizer_with_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
        data_collator = DataCollatorForLanguageModeling(tokenizer)
        # ^ masked lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((31, 107)))
        self.assertEqual(batch["labels"].shape, torch.Size((31, 107)))

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))

    def test_plm(self):
        tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
        data_collator = DataCollatorForPermutationLanguageModeling(tokenizer)
        # ^ permutation lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((31, 112)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((31, 112, 112)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((31, 112, 112)))
        self.assertEqual(batch["labels"].shape, torch.Size((31, 112)))

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 512, 512)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 512, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))

        example = [torch.randint(5, [5])]
        with self.assertRaises(ValueError):
            # Expect error due to odd sequence length
            data_collator(example)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

    def test_nsp(self):
        tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        data_collator = DataCollatorForNextSentencePrediction(tokenizer)

        dataset = TextDatasetForNextSentencePrediction(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)

        # Since there are randomly generated false samples, the total number of samples is not fixed.
        total_samples = batch["input_ids"].shape[0]
        self.assertEqual(batch["input_ids"].shape, torch.Size((total_samples, 512)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((total_samples, 512)))
        self.assertEqual(batch["masked_lm_labels"].shape, torch.Size((total_samples, 512)))
        self.assertEqual(batch["next_sentence_label"].shape, torch.Size((total_samples,)))
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    def test_sop(self):
        tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
        data_collator = DataCollatorForSOP(tokenizer)

        dataset = LineByLineWithSOPTextDataset(tokenizer, file_dir=PATH_SAMPLE_TEXT_DIR, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)

        # Since there are randomly generated false samples, the total number of samples is not fixed.
        total_samples = batch["input_ids"].shape[0]
        self.assertEqual(batch["input_ids"].shape, torch.Size((total_samples, 512)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((total_samples, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((total_samples, 512)))
        self.assertEqual(batch["sentence_order_label"].shape, torch.Size((total_samples,)))