test_processor_idefics.py 8.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from transformers.testing_utils import TestCasePlus, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import (
        AutoProcessor,
        IdeficsImageProcessor,
        IdeficsProcessor,
        LlamaTokenizerFast,
        PreTrainedTokenizerFast,
    )


@require_torch
@require_vision
class IdeficsProcessorTest(TestCasePlus):
    def setUp(self):
        super().setUp()

        self.checkpoint_path = self.get_auto_remove_tmp_dir()

        image_processor = IdeficsImageProcessor()
        tokenizer = LlamaTokenizerFast.from_pretrained("HuggingFaceM4/tiny-random-idefics")

        processor = IdeficsProcessor(image_processor, tokenizer)

        processor.save_pretrained(self.checkpoint_path)

        self.input_keys = ["pixel_values", "input_ids", "attention_mask", "image_attention_mask"]

    def get_tokenizer(self, **kwargs):
        return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).tokenizer

    def get_image_processor(self, **kwargs):
        return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).image_processor

    def prepare_prompts(self):
        """This function prepares a list of PIL images"""

        num_images = 2
        images = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) for x in range(num_images)]
        images = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in images]

        # print([type(x) for x in images])
        # die

        prompts = [
            # text and 1 image
            [
                "User:",
                images[0],
                "Describe this image.\nAssistant:",
            ],
            # text and images
            [
                "User:",
                images[0],
                "Describe this image.\nAssistant: An image of two dogs.\n",
                "User:",
                images[1],
                "Describe this image.\nAssistant:",
            ],
            # only text
            [
                "User:",
                "Describe this image.\nAssistant: An image of two kittens.\n",
                "User:",
                "Describe this image.\nAssistant:",
            ],
            # only images
            [
                images[0],
                images[1],
            ],
        ]

        return prompts

    def test_save_load_pretrained_additional_features(self):
        processor = IdeficsProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
        processor.save_pretrained(self.checkpoint_path)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)

        processor = IdeficsProcessor.from_pretrained(
            self.checkpoint_path, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, IdeficsImageProcessor)

    def test_processor(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)

        prompts = self.prepare_prompts()

        # test that all prompts succeeded
127
        input_processor = processor(prompts, return_tensors="pt", padding="longest")
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        for key in self.input_keys:
            assert torch.is_tensor(input_processor[key])

    def test_tokenizer_decode(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)

144
145
146
147
148
149
150
    def test_tokenizer_padding(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer(padding_side="right")

        processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)

        predicted_tokens = [
151
152
            "<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk>",
            "<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk>",
153
        ]
154
155
156
157
        predicted_attention_masks = [
            ([1] * 10) + ([0] * 9),
            ([1] * 10) + ([0] * 10),
        ]
158
159
160
        prompts = [[prompt] for prompt in self.prepare_prompts()[2]]
        max_length = processor(prompts, padding="max_length", truncation=True, max_length=20)
        longest = processor(prompts, padding="longest", truncation=True, max_length=30)
161

162
163
        decoded_max_length = processor.tokenizer.decode(max_length["input_ids"][-1])
        decoded_longest = processor.tokenizer.decode(longest["input_ids"][-1])
164

165
166
167
        self.assertEqual(decoded_max_length, predicted_tokens[1])
        self.assertEqual(decoded_longest, predicted_tokens[0])

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        self.assertListEqual(max_length["attention_mask"][-1].tolist(), predicted_attention_masks[1])
        self.assertListEqual(longest["attention_mask"][-1].tolist(), predicted_attention_masks[0])

    def test_tokenizer_left_padding(self):
        """Identical to test_tokenizer_padding, but with padding_side not explicitly set."""
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)

        predicted_tokens = [
            "<unk><unk><unk><unk><unk><unk><unk><unk><unk><s> Describe this image.\nAssistant:",
            "<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><s> Describe this image.\nAssistant:",
        ]
        predicted_attention_masks = [
            ([0] * 9) + ([1] * 10),
            ([0] * 10) + ([1] * 10),
        ]
        prompts = [[prompt] for prompt in self.prepare_prompts()[2]]
        max_length = processor(prompts, padding="max_length", truncation=True, max_length=20)
        longest = processor(prompts, padding="longest", truncation=True, max_length=30)

        decoded_max_length = processor.tokenizer.decode(max_length["input_ids"][-1])
        decoded_longest = processor.tokenizer.decode(longest["input_ids"][-1])

        self.assertEqual(decoded_max_length, predicted_tokens[1])
        self.assertEqual(decoded_longest, predicted_tokens[0])

        self.assertListEqual(max_length["attention_mask"][-1].tolist(), predicted_attention_masks[1])
        self.assertListEqual(longest["attention_mask"][-1].tolist(), predicted_attention_masks[0])

199
200
201
202
203
204
205
    def test_model_input_names(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
        prompts = self.prepare_prompts()

206
        inputs = processor(prompts, padding="longest")
207
208
209

        # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
        self.assertSetEqual(set(inputs.keys()), set(self.input_keys))