test_processor_sam.py 4.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest

import numpy as np

Arthur's avatar
Arthur committed
20
21
from transformers.testing_utils import require_torch, require_torchvision, require_vision
from transformers.utils import is_torch_available, is_vision_available
22
23
24
25
26
27
28


if is_vision_available():
    from PIL import Image

    from transformers import AutoProcessor, SamImageProcessor, SamProcessor

Arthur's avatar
Arthur committed
29
30
31
if is_torch_available():
    import torch

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

@require_vision
@require_torchvision
class SamProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        image_processor = SamImageProcessor()
        processor = SamProcessor(image_processor)
        processor.save_pretrained(self.tmpdirname)

    def get_image_processor(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_additional_features(self):
        processor = SamProcessor(image_processor=self.get_image_processor())
        processor.save_pretrained(self.tmpdirname)

        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)

        processor = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, SamImageProcessor)

    def test_image_processor(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = image_processor(image_input, return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        input_feat_extract.pop("original_sizes")  # pop original_sizes as it is popped in the processor
        input_feat_extract.pop("reshaped_input_sizes")  # pop original_sizes as it is popped in the processor

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
Arthur's avatar
Arthur committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    @require_torch
    def test_post_process_masks(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)
        dummy_masks = [torch.ones((1, 3, 5, 5))]

        original_sizes = [[1764, 2646]]

        reshaped_input_size = [[683, 1024]]
        masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size)
        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        masks = processor.post_process_masks(
            dummy_masks, torch.tensor(original_sizes), torch.tensor(reshaped_input_size)
        )
        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        # should also work with np
        dummy_masks = [np.ones((1, 3, 5, 5))]
        masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))

        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        dummy_masks = [[1, 0], [0, 1]]
        with self.assertRaises(ValueError):
            masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))