run_text_classification.py 22.5 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for sequence classification."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional

import numpy as np
from datasets import load_dataset

from transformers import (
    AutoConfig,
    AutoTokenizer,
    HfArgumentParser,
    PretrainedConfig,
    TFAutoModelForSequenceClassification,
35
    TFTrainingArguments,
Matt's avatar
Matt committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    set_seed,
)
from transformers.file_utils import CONFIG_NAME, TF2_WEIGHTS_NAME


os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"  # Reduce the amount of console output from TF
import tensorflow as tf  # noqa: E402


logger = logging.getLogger(__name__)


# region Helper classes
class SavePretrainedCallback(tf.keras.callbacks.Callback):
    # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary
    # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback
    # that saves the model with this method after each epoch.
    def __init__(self, output_dir, **kwargs):
        super().__init__()
        self.output_dir = output_dir

    def on_epoch_end(self, epoch, logs=None):
        self.model.save_pretrained(self.output_dir)


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def convert_dataset_for_tensorflow(
    dataset, non_label_column_names, batch_size, dataset_mode="variable_batch", shuffle=True, drop_remainder=True
):
    """Converts a Hugging Face dataset to a Tensorflow Dataset. The dataset_mode controls whether we pad all batches
    to the maximum sequence length, or whether we only pad to the maximum length within that batch. The former
    is most useful when training on TPU, as a new graph compilation is required for each sequence length.
    """

    def densify_ragged_batch(features, label=None):
        features = {
            feature: ragged_tensor.to_tensor(shape=batch_shape[feature]) for feature, ragged_tensor in features.items()
        }
        if label is None:
            return features
        else:
            return features, label

    feature_keys = list(set(dataset.features.keys()) - set(non_label_column_names + ["label"]))
    if dataset_mode == "variable_batch":
        batch_shape = {key: None for key in feature_keys}
        data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys}
    elif dataset_mode == "constant_batch":
        data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys}
        batch_shape = {
            key: tf.concat(([batch_size], ragged_tensor.bounding_shape()[1:]), axis=0)
            for key, ragged_tensor in data.items()
        }
    else:
        raise ValueError("Unknown dataset mode!")

    if "label" in dataset.features:
        labels = tf.convert_to_tensor(np.array(dataset["label"]))
        tf_dataset = tf.data.Dataset.from_tensor_slices((data, labels))
    else:
        tf_dataset = tf.data.Dataset.from_tensor_slices(data)
    if shuffle:
        tf_dataset = tf_dataset.shuffle(buffer_size=len(dataset))
    tf_dataset = tf_dataset.batch(batch_size=batch_size, drop_remainder=drop_remainder).map(densify_ragged_batch)
    return tf_dataset


Matt's avatar
Matt committed
102
103
# endregion

104

Matt's avatar
Matt committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# region Command-line arguments
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})

    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
139
            "Data will always be padded when using TPUs."
Matt's avatar
Matt committed
140
141
142
143
144
145
146
147
148
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
149
    max_val_samples: Optional[int] = field(
Matt's avatar
Matt committed
150
151
        default=None,
        metadata={
152
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
Matt's avatar
Matt committed
153
154
155
            "value if set."
        },
    )
156
    max_test_samples: Optional[int] = field(
Matt's avatar
Matt committed
157
158
        default=None,
        metadata={
159
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
Matt's avatar
Matt committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
            "value if set."
        },
    )

    def __post_init__(self):
        train_extension = self.train_file.split(".")[-1].lower() if self.train_file is not None else None
        validation_extension = (
            self.validation_file.split(".")[-1].lower() if self.validation_file is not None else None
        )
        test_extension = self.test_file.split(".")[-1].lower() if self.test_file is not None else None
        extensions = {train_extension, validation_extension, test_extension}
        extensions.discard(None)
        assert len(extensions) != 0, "Need to supply at least one of --train_file, --validation_file or --test_file!"
        assert len(extensions) == 1, "All input files should have the same file extension, either csv or json!"
        assert "csv" in extensions or "json" in extensions, "Input files should have either .csv or .json extensions!"
        self.input_file_extension = extensions.pop()


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )


# endregion


def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

219
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
Matt's avatar
Matt committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    output_dir = Path(training_args.output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)
    # endregion

    # region Checkpoints
    # Detecting last checkpoint.
    checkpoint = None
    if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
        if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file():
            checkpoint = output_dir
            logger.info(
                f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
                " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
        else:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to continue regardless."
            )

    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)

    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Loading data
    # For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally
    # 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two
    # columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than
    # a single grammatical sentence, when the task requires it.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file}
    data_files = {key: file for key, file in data_files.items() if file is not None}

    for key in data_files.keys():
        logger.info(f"Loading a local file for {key}: {data_files[key]}")

    if data_args.input_file_extension == "csv":
        # Loading a dataset from local csv files
        datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir)
    else:
        # Loading a dataset from local json files
        datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Label preprocessing
    # If you've passed us a training set, we try to infer your labels from it
    if "train" in datasets:
        # By default we assume that if your label column looks like a float then you're doing regression,
        # and if not then you're doing classification. This is something you may want to change!
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
    # If you haven't passed a training set, we read label info from the saved model (this happens later)
    else:
        num_labels = None
        label_list = None
        is_regression = None
    # endregion

307
    # region Load model config and tokenizer
Matt's avatar
Matt committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    if checkpoint is not None:
        config_path = training_args.output_dir
    elif model_args.config_name:
        config_path = model_args.config_name
    else:
        config_path = model_args.model_name_or_path
    if num_labels is not None:
        config = AutoConfig.from_pretrained(
            config_path,
            num_labels=num_labels,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        config = AutoConfig.from_pretrained(
            config_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    # endregion

    # region Dataset preprocessing
    # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
    column_names = {col for cols in datasets.column_names.values() for col in cols}
    non_label_column_names = [name for name in column_names if name != "label"]
    if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", "sentence2"
    elif "sentence1" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", None
    else:
        if len(non_label_column_names) >= 2:
            sentence1_key, sentence2_key = non_label_column_names[:2]
        else:
            sentence1_key, sentence2_key = non_label_column_names[0], None

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Ensure that our labels match the model's, if it has some pre-specified
    if "train" in datasets:
360
361
        if not is_regression and config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
            label_name_to_id = config.label2id
Matt's avatar
Matt committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
                label_to_id = label_name_to_id  # Use the model's labels
            else:
                logger.warning(
                    "Your model seems to have been trained with labels, but they don't match the dataset: ",
                    f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                    "\nIgnoring the model labels as a result.",
                )
                label_to_id = {v: i for i, v in enumerate(label_list)}
        elif not is_regression:
            label_to_id = {v: i for i, v in enumerate(label_list)}
        else:
            label_to_id = None
        # Now we've established our label2id, let's overwrite the model config with it.
376
377
378
        config.label2id = label_to_id
        if config.label2id is not None:
            config.id2label = {id: label for label, id in label_to_id.items()}
Matt's avatar
Matt committed
379
        else:
380
            config.id2label = None
Matt's avatar
Matt committed
381
    else:
382
        label_to_id = config.label2id  # Just load the data from the model
Matt's avatar
Matt committed
383

384
    if "validation" in datasets and config.label2id is not None:
Matt's avatar
Matt committed
385
386
387
388
389
390
391
392
393
        validation_label_list = datasets["validation"].unique("label")
        for val_label in validation_label_list:
            assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!"

    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
394
        result = tokenizer(*args, max_length=max_seq_length, truncation=True)
Matt's avatar
Matt committed
395
396

        # Map labels to IDs
397
398
        if config.label2id is not None and "label" in examples:
            result["label"] = [(config.label2id[l] if l != -1 else -1) for l in examples["label"]]
Matt's avatar
Matt committed
399
400
401
402
403
        return result

    datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)
    # endregion

404
405
406
407
408
409
410
411
412
    with training_args.strategy.scope():
        # region Load pretrained model
        # Set seed before initializing model
        set_seed(training_args.seed)
        #
        # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
        # download model & vocab.
        if checkpoint is None:
            model_path = model_args.model_name_or_path
Matt's avatar
Matt committed
413
        else:
414
415
416
417
418
419
420
            model_path = checkpoint
        model = TFAutoModelForSequenceClassification.from_pretrained(
            model_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
421
        )
422
423
424
425
426
427
428
429
430
        # endregion

        # region Optimizer, loss and compilation
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=training_args.learning_rate,
            beta_1=training_args.adam_beta1,
            beta_2=training_args.adam_beta2,
            epsilon=training_args.adam_epsilon,
            clipnorm=training_args.max_grad_norm,
Matt's avatar
Matt committed
431
432
        )
        if is_regression:
433
434
            loss_fn = tf.keras.losses.MeanSquaredError()
            metrics = []
Matt's avatar
Matt committed
435
        else:
436
437
438
439
440
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
            metrics = ["accuracy"]
        model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics)
        # endregion

Matt's avatar
Matt committed
441
        # region Convert data to a tf.data.Dataset
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

        tf_data = dict()
        max_samples = {
            "train": data_args.max_train_samples,
            "validation": data_args.max_val_samples,
            "test": data_args.max_test_samples,
        }
        for key in ("train", "validation", "test"):
            if key not in datasets:
                tf_data[key] = None
                continue
            if key in ("train", "validation"):
                assert "label" in datasets[key].features, f"Missing labels from {key} data!"
            if key == "train":
                shuffle = True
                batch_size = training_args.per_device_train_batch_size
                drop_remainder = True  # Saves us worrying about scaling gradients for the last batch
            else:
                shuffle = False
                batch_size = training_args.per_device_eval_batch_size
                drop_remainder = False
            samples_limit = max_samples[key]
            dataset = datasets[key]
            if samples_limit is not None:
                dataset = dataset.select(range(samples_limit))
            if isinstance(training_args.strategy, tf.distribute.TPUStrategy) or data_args.pad_to_max_length:
                logger.info("Padding all batches to max length because argument was set or we're on TPU.")
                dataset_mode = "constant_batch"
            else:
                dataset_mode = "variable_batch"
            data = convert_dataset_for_tensorflow(
                dataset,
                non_label_column_names,
                batch_size=batch_size,
                dataset_mode=dataset_mode,
                drop_remainder=drop_remainder,
                shuffle=shuffle,
            )
            tf_data[key] = data
        # endregion

        # region Training and validation
        if tf_data["train"] is not None:
            callbacks = [SavePretrainedCallback(output_dir=training_args.output_dir)]
            model.fit(
                tf_data["train"],
                validation_data=tf_data["validation"],
                epochs=int(training_args.num_train_epochs),
                callbacks=callbacks,
            )
        elif tf_data["validation"] is not None:
            # If there's a validation dataset but no training set, just evaluate the metrics
            logger.info("Computing metrics on validation data...")
            if is_regression:
                loss = model.evaluate(tf_data["validation"])
                logger.info(f"Loss: {loss:.5f}")
            else:
                loss, accuracy = model.evaluate(tf_data["validation"])
                logger.info(f"Loss: {loss:.5f}, Accuracy: {accuracy * 100:.4f}%")
        # endregion

        # region Prediction
        if tf_data["test"] is not None:
            logger.info("Doing predictions on test dataset...")
            predictions = model.predict(tf_data["test"])["logits"]
            predicted_class = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
            output_test_file = os.path.join(training_args.output_dir, "test_results.txt")
            with open(output_test_file, "w") as writer:
                writer.write("index\tprediction\n")
                for index, item in enumerate(predicted_class):
                    if is_regression:
                        writer.write(f"{index}\t{item:3.3f}\n")
                    else:
                        item = config.id2label[item]
                        writer.write(f"{index}\t{item}\n")
            logger.info(f"Wrote predictions to {output_test_file}!")
        # endregion

    # region Prediction losses
    # This section is outside the scope() because it's very quick to compute, but behaves badly inside it
522
    if "test" in datasets and "label" in datasets["test"].features:
523
524
525
526
        print("Computing prediction loss on test labels...")
        labels = datasets["test"]["label"]
        loss = float(loss_fn(labels, predictions).numpy())
        print(f"Test loss: {loss:.4f}")
Matt's avatar
Matt committed
527
528
529
530
531
    # endregion


if __name__ == "__main__":
    main()