test_modeling_splinter.py 18.3 KB
Newer Older
Ori Ram's avatar
Ori Ram committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Splinter model. """

17
import copy
Ori Ram's avatar
Ori Ram committed
18
19
20
21
22
import unittest

from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Ori Ram's avatar
Ori Ram committed
25
26
27
28
29


if is_torch_available():
    import torch

30
    from transformers import SplinterConfig, SplinterForPreTraining, SplinterForQuestionAnswering, SplinterModel
Ori Ram's avatar
Ori Ram committed
31
32
33
34
35
36
37
38
    from transformers.models.splinter.modeling_splinter import SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST


class SplinterModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
39
        num_questions=3,
Ori Ram's avatar
Ori Ram committed
40
41
42
43
44
45
46
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
47
        question_token_id=1,
Ori Ram's avatar
Ori Ram committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
64
        self.num_questions = num_questions
Ori Ram's avatar
Ori Ram committed
65
66
67
68
69
70
71
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
72
        self.question_token_id = question_token_id
Ori Ram's avatar
Ori Ram committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
89
        input_ids[:, 1] = self.question_token_id
Ori Ram's avatar
Ori Ram committed
90
91
92
93
94
95
96
97
98

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

99
100
101
        start_positions = None
        end_positions = None
        question_positions = None
Ori Ram's avatar
Ori Ram committed
102
        if self.use_labels:
103
104
105
            start_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
            end_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
            question_positions = ids_tensor([self.batch_size, self.num_questions], self.num_labels)
Ori Ram's avatar
Ori Ram committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119

        config = SplinterConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
120
            question_token_id=self.question_token_id,
Ori Ram's avatar
Ori Ram committed
121
122
        )

123
        return (config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions)
Ori Ram's avatar
Ori Ram committed
124
125

    def create_and_check_model(
126
127
128
129
130
131
132
133
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        start_positions,
        end_positions,
        question_positions,
Ori Ram's avatar
Ori Ram committed
134
135
136
137
138
139
140
141
142
143
    ):
        model = SplinterModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_question_answering(
144
145
146
147
148
149
150
151
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        start_positions,
        end_positions,
        question_positions,
Ori Ram's avatar
Ori Ram committed
152
153
154
155
156
157
158
159
    ):
        model = SplinterForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
160
161
            start_positions=start_positions[:, 0],
            end_positions=end_positions[:, 0],
Ori Ram's avatar
Ori Ram committed
162
163
164
165
        )
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    def create_and_check_for_pretraining(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        start_positions,
        end_positions,
        question_positions,
    ):
        model = SplinterForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=start_positions,
            end_positions=end_positions,
            question_positions=question_positions,
        )
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.num_questions, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.num_questions, self.seq_length))

Ori Ram's avatar
Ori Ram committed
190
191
192
193
194
195
196
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
197
198
199
            start_positions,
            end_positions,
            question_positions,
Ori Ram's avatar
Ori Ram committed
200
        ) = config_and_inputs
201
202
203
204
205
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
Ori Ram's avatar
Ori Ram committed
206
207
208
209
210
211
212
213
214
215
        return config, inputs_dict


@require_torch
class SplinterModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            SplinterModel,
            SplinterForQuestionAnswering,
216
            SplinterForPreTraining,
Ori Ram's avatar
Ori Ram committed
217
218
219
220
221
        )
        if is_torch_available()
        else ()
    )

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
        if return_labels:
            if issubclass(model_class, SplinterForPreTraining):
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size,
                    self.model_tester.num_questions,
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size,
                    self.model_tester.num_questions,
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["question_positions"] = torch.zeros(
                    self.model_tester.batch_size,
                    self.model_tester.num_questions,
                    dtype=torch.long,
                    device=torch_device,
                )
            elif issubclass(model_class, SplinterForQuestionAnswering):
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

Ori Ram's avatar
Ori Ram committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    def setUp(self):
        self.model_tester = SplinterModelTester(self)
        self.config_tester = ConfigTester(self, config_class=SplinterConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                if isinstance(model, SplinterForPreTraining):
                    with self.assertRaises(TypeError):
                        # question_positions must not be None.
                        model(**inputs)[0]
                else:
                    model(**inputs)[0]

Ori Ram's avatar
Ori Ram committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    @slow
    def test_model_from_pretrained(self):
        for model_name in SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SplinterModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


@require_torch
class SplinterModelIntegrationTest(unittest.TestCase):
    @slow
    def test_splinter_question_answering(self):
        model = SplinterForQuestionAnswering.from_pretrained("tau/splinter-base-qass")

        # Input: "[CLS] Brad was born in [QUESTION] . He returned to the United Kingdom later . [SEP]"
        # Output should be the span "the United Kingdom"
        input_ids = torch.tensor(
            [[101, 7796, 1108, 1255, 1107, 104, 119, 1124, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
        )
        output = model(input_ids)

        expected_shape = torch.Size((1, 16))
        self.assertEqual(output.start_logits.shape, expected_shape)
        self.assertEqual(output.end_logits.shape, expected_shape)

        self.assertEqual(torch.argmax(output.start_logits), 10)
        self.assertEqual(torch.argmax(output.end_logits), 12)
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

    @slow
    def test_splinter_pretraining(self):
        model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")

        # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
        # Output should be the spans "Brad" and "the United Kingdom"
        input_ids = torch.tensor(
            [[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
        )
        question_positions = torch.tensor([[1, 5]], dtype=torch.long)
        output = model(input_ids, question_positions=question_positions)

        expected_shape = torch.Size((1, 2, 16))
        self.assertEqual(output.start_logits.shape, expected_shape)
        self.assertEqual(output.end_logits.shape, expected_shape)

        self.assertEqual(torch.argmax(output.start_logits[0, 0]), 7)
        self.assertEqual(torch.argmax(output.end_logits[0, 0]), 7)
        self.assertEqual(torch.argmax(output.start_logits[0, 1]), 10)
        self.assertEqual(torch.argmax(output.end_logits[0, 1]), 12)

    @slow
    def test_splinter_pretraining_loss_requires_question_positions(self):
        model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")

        # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
        # Output should be the spans "Brad" and "the United Kingdom"
        input_ids = torch.tensor(
            [[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
        )
        start_positions = torch.tensor([[7, 10]], dtype=torch.long)
        end_positions = torch.tensor([7, 12], dtype=torch.long)
        with self.assertRaises(TypeError):
            model(
                input_ids,
                start_positions=start_positions,
                end_positions=end_positions,
            )

    @slow
    def test_splinter_pretraining_loss(self):
        model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")

        # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
        # Output should be the spans "Brad" and "the United Kingdom"
        input_ids = torch.tensor(
            [
                [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
                [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
            ]
        )
        start_positions = torch.tensor([[7, 10], [7, 10]], dtype=torch.long)
        end_positions = torch.tensor([[7, 12], [7, 12]], dtype=torch.long)
        question_positions = torch.tensor([[1, 5], [1, 5]], dtype=torch.long)
        output = model(
            input_ids,
            start_positions=start_positions,
            end_positions=end_positions,
            question_positions=question_positions,
        )
        self.assertAlmostEqual(output.loss.item(), 0.0024, 4)

    @slow
    def test_splinter_pretraining_loss_with_padding(self):
        model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")

        # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
        # Output should be the spans "Brad" and "the United Kingdom"
        input_ids = torch.tensor(
            [
                [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
            ]
        )
        start_positions = torch.tensor([[7, 10]], dtype=torch.long)
        end_positions = torch.tensor([7, 12], dtype=torch.long)
        question_positions = torch.tensor([[1, 5]], dtype=torch.long)
        start_positions_with_padding = torch.tensor([[7, 10, 0]], dtype=torch.long)
        end_positions_with_padding = torch.tensor([7, 12, 0], dtype=torch.long)
        question_positions_with_padding = torch.tensor([[1, 5, 0]], dtype=torch.long)
        output = model(
            input_ids,
            start_positions=start_positions,
            end_positions=end_positions,
            question_positions=question_positions,
        )
        output_with_padding = model(
            input_ids,
            start_positions=start_positions_with_padding,
            end_positions=end_positions_with_padding,
            question_positions=question_positions_with_padding,
        )

        self.assertAlmostEqual(output.loss.item(), output_with_padding.loss.item(), 4)

        # Note that the original code uses 0 to denote padded question tokens
        # and their start and end positions. As the pad_token_id of the model's
        # config is used for the losse's ignore_index in SplinterForPreTraining,
        # we add this test to ensure anybody making changes to the default
        # value of the config, will be aware of the implication.
        self.assertEqual(model.config.pad_token_id, 0)

    @slow
    def test_splinter_pretraining_prepare_question_positions(self):
        model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")

        input_ids = torch.tensor(
            [
                [101, 104, 1, 2, 104, 3, 4, 102],
                [101, 1, 104, 2, 104, 3, 104, 102],
                [101, 1, 2, 104, 104, 3, 4, 102],
                [101, 1, 2, 3, 4, 5, 104, 102],
            ]
        )
        question_positions = torch.tensor([[1, 4, 0], [2, 4, 6], [3, 4, 0], [6, 0, 0]], dtype=torch.long)
        output_without_positions = model(input_ids)
        output_with_positions = model(input_ids, question_positions=question_positions)
        self.assertTrue((output_without_positions.start_logits == output_with_positions.start_logits).all())
        self.assertTrue((output_without_positions.end_logits == output_with_positions.end_logits).all())