distillation.py 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import argparse
import gc
import os
from pathlib import Path
from typing import List

import pytorch_lightning as pl
import torch
from torch import nn
from torch.nn import functional as F

from lightning_base import generic_train
13
14
15
16
17
18
19
20
from transformers import (
    AdamW,
    BartConfig,
    BartForConditionalGeneration,
    MBartTokenizer,
    T5Config,
    T5ForConditionalGeneration,
)
21
22
23


try:
24
    from .finetune import SummarizationModule, TranslationModule
25
    from .initialization_utils import init_student, copy_layers
26
27
28
29
30
31
32
33
34
    from .utils import (
        use_task_specific_params,
        pickle_load,
        freeze_params,
        assert_all_frozen,
        any_requires_grad,
        calculate_bleu_score,
    )
    from .finetune import main as ft_main
35
except ImportError:
36
    from finetune import SummarizationModule, TranslationModule
37
38
    from finetune import main as ft_main
    from initialization_utils import init_student, copy_layers
39
40
41
42
43
44
45
46
    from utils import (
        use_task_specific_params,
        pickle_load,
        freeze_params,
        assert_all_frozen,
        any_requires_grad,
        calculate_bleu_score,
    )
47
48


49
class BartSummarizationDistiller(SummarizationModule):
50
51
52
53
    loss_names = ["loss", "ce_loss", "mlm_loss", "enc_mse_loss", "hid_loss_enc", "hid_loss_dec"]

    def __init__(self, hparams):
        assert Path(hparams.data_dir).exists()
54
        student, student_cfg, teacher = self.pre_init(hparams)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

        super().__init__(hparams, model=student, config=student_cfg)
        self.teacher = teacher
        use_task_specific_params(self.teacher, "summarization")
        freeze_params(self.teacher)
        self.sanity_check_gradients()
        self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
        self.temperature = 2.0
        self.alpha_mlm = hparams.alpha_mlm
        self.alpha_ce = hparams.alpha_ce
        self.alpha_hid = hparams.alpha_hid
        # self.alpha_cos = hparams.alpha_cos
        self.alpha_encoder_loss = self.hparams.alpha_encoder_loss
        gc.collect()
        torch.cuda.empty_cache()

    def sanity_check_gradients(self):
        assert_all_frozen(self.teacher)
        assert_all_frozen(self.model.model.decoder.embed_tokens)
        assert_all_frozen(self.model.model.encoder.embed_tokens)
        if self.different_encoder:
            assert any_requires_grad(self.model.model.encoder)
        else:
            freeze_params(self.model.model.encoder)
            del self.teacher.model.encoder

    def pre_init(self, hparams):
82
83
        self.output_dir = Path(hparams.output_dir)
        self.output_dir.mkdir(exist_ok=True)
84
85
86
87
88
        teacher = BartForConditionalGeneration.from_pretrained(hparams.teacher).eval()
        student_updates = {
            "decoder_layers": hparams.student_decoder_layers,
            "encoder_layers": hparams.student_encoder_layers,
        }
89
90
        if hparams.length_penalty != -1:
            student_updates["length_penalty"] = hparams.length_penalty
91
92
93
94
95
96
97
98
99
100
        d_layers_to_copy = get_layers_to_copy(student_updates["decoder_layers"], teacher.config.decoder_layers)
        e_layers_to_copy: List = get_layers_to_copy(student_updates["encoder_layers"], teacher.config.encoder_layers)
        hparams.d_layer_to_copy = d_layers_to_copy
        hparams.e_layer_to_copy = e_layers_to_copy
        kw = teacher.config.to_diff_dict()
        kw.update(student_updates)
        # Copy weights
        student_cfg = BartConfig(**kw)
        student = BartForConditionalGeneration(student_cfg)
        student, _ = init_student(student, teacher)
101
        save_dir = self.output_dir.joinpath("student")
102
        self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
103
104
105
        student.save_pretrained(save_dir)
        hparams.model_name_or_path = str(save_dir)
        return student, student_cfg, teacher
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    def copy_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
        if teacher.config.model_type == "t5":
            return self.copy_t5_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
        self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.encoder_layers
        self.different_decoder = hparams.student_decoder_layers != teacher.config.decoder_layers
        if self.different_decoder:
            copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy)
        if self.different_encoder:
            copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy)

    def copy_t5_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
        self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.num_layers
        self.different_decoder = hparams.student_decoder_layers != teacher.config.num_layers
        if self.different_decoder:
            copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy)
        if self.different_encoder:
            copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy)

    def calc_mse_loss(self, teacher_outputs: torch.Tensor, student_outputs: torch.Tensor, mask) -> torch.FloatTensor:
        if mask is not None:
            # mask has False at padding_idx
            sel_mask = mask[:, :, None].expand_as(student_outputs).bool()
            s_logits_slct = torch.masked_select(student_outputs, sel_mask)
            t_logits_slct = torch.masked_select(teacher_outputs, sel_mask)
        else:
            t_logits_slct = teacher_outputs
            s_logits_slct = student_outputs
        return F.mse_loss(s_logits_slct, t_logits_slct)

    def calc_ce_loss(self, mask, s_logits, t_logits):
        if mask is not None:
            # mask has False at padding_idx
            sel_mask = mask[:, :, None].expand_as(s_logits)
            s_logits_slct = torch.masked_select(
                s_logits, sel_mask
            )  # (bs * seq_length * voc_size) modulo the 1s in mask
            t_logits_slct = torch.masked_select(
                t_logits, sel_mask
            )  # (bs * seq_length * voc_size) modulo the 1s in mask
        else:
            t_logits_slct = t_logits
            s_logits_slct = s_logits  # (bs * seq_length * voc_size) modulo the 1s in mask
        s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        assert t_logits_slct.size() == s_logits_slct.size()
        loss_ce = (
            self.ce_loss_fct(
                F.log_softmax(s_logits_slct / self.temperature, dim=-1),
                F.softmax(t_logits_slct / self.temperature, dim=-1),
            )
            * (self.temperature) ** 2
        )
        return loss_ce, s_logits_slct, t_logits_slct

    def configure_optimizers(self):
        "Prepare optimizer and schedule (linear warmup and decay)"
        model = self.model
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.hparams.weight_decay,
            },
            {
                "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
        self.opt = optimizer
        return [optimizer]

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        SummarizationModule.add_model_specific_args(parser, root_dir)
182
        add_distill_args(parser)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        return parser

    def _step(self, batch):
        # assert is_frozen(self.teacher)
        pad_token_id = self.tokenizer.pad_token_id
        input_ids, src_mask, y = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
        decoder_input_ids = y[:, :-1].contiguous()
        labels = y[:, 1:].clone()
        labels[y[:, 1:] == pad_token_id] = -100
        # noinspection PyCallingNonCallable
        sloss, slogits, dec_hidden, enc_outputs, enc_hidden_state = self(
            input_ids,
            attention_mask=src_mask,
            decoder_input_ids=decoder_input_ids,
            labels=labels,
            output_hidden_states=True,
            output_attentions=False,
        )

        def zero_tensor():
            return torch.tensor(0.0).type_as(sloss)

        loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
        if self.different_encoder:
            with torch.no_grad():
                teacher_enc_outputs, teacher_enc_hid, _ = self.teacher.model.encoder(
                    input_ids, attention_mask=src_mask, output_hidden_states=True
                )
            if self.hparams.alpha_encoder_loss > 0:
                loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, src_mask)

            hid_loss_enc = self.calc_hidden_loss(
                src_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
            )

        teacher_enc_outputs = (enc_outputs,)
        assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)

        with torch.no_grad():
            tloss, tlogits, tdec_hidden, _ = self.teacher(
                input_ids,
                attention_mask=src_mask,
                encoder_outputs=teacher_enc_outputs,
                decoder_input_ids=decoder_input_ids,
                lm_labels=labels,
                output_hidden_states=True,
            )
        dec_mask = decoder_input_ids.ne(pad_token_id)
        loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, slogits, tlogits)
        if self.alpha_hid > 0:
            hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_layer_to_copy)

        blended_loss = (
            self.alpha_ce * loss_ce
            + self.alpha_mlm * sloss
            + self.hparams.alpha_encoder_loss * loss_encoder
            + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
        )
        return blended_loss, loss_ce, sloss, loss_encoder, hid_loss_enc, hid_loss_dec

    def calc_hidden_loss(self, attention_mask, hidden_states, hidden_states_T, matches):
        assert not isinstance(
            hidden_states, torch.Tensor
        ), f"expected list or tuple for hidden_states, got tensor of shape {hidden_states.shape}"
        assert not isinstance(
            hidden_states_T, torch.Tensor
        ), f"expected list or tuple for hidden_states_T, got tensor of shape {hidden_states_T.shape}"
        mask = attention_mask.to(hidden_states[0])
        valid_count = mask.sum() * hidden_states[0].size(-1)
        hidden_losses = [
            (F.mse_loss(hidden_states[i], hidden_states_T[j], reduction="none") * mask.unsqueeze(-1)).sum()
            / valid_count
            for i, j in enumerate(matches)
        ]
        return sum(hidden_losses)


260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def add_distill_args(parser):
    parser.add_argument("--teacher", default="facebook/bart-large-cnn", type=str)
    parser.add_argument("--alpha_ce", default=0.8, type=float)
    parser.add_argument("--alpha_mlm", default=0.2, type=float)
    parser.add_argument("--alpha_encoder_loss", default=0.0, type=float)
    parser.add_argument("--alpha_hid", default=0.0, type=float, required=False)
    parser.add_argument("--student_decoder_layers", default=12, type=int, required=False)
    parser.add_argument("--student_encoder_layers", default=12, type=int, required=False)
    parser.add_argument("--no_teacher", action="store_true", default=False)
    parser.add_argument("--length_penalty", type=float, default=-1)


class BartTranslationDistiller(BartSummarizationDistiller):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
    val_metric = "bleu"

    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        assert isinstance(self.tokenizer, MBartTokenizer)
        assert hparams.src_lang is not None
        assert hparams.tgt_lang is not None
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]

    def calc_generative_metrics(self, preds, target) -> dict:
        return calculate_bleu_score(preds, target)

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        TranslationModule.add_model_specific_args(parser, root_dir)
        add_distill_args(parser)
        return parser


298
class T5SummarizationDistiller(BartSummarizationDistiller):
299
    def pre_init(self, hparams):
300
        raise NotImplementedError("T5 Distillation does not work yet")
301
302
        self.output_dir = Path(hparams.output_dir)
        self.output_dir.mkdir(exist_ok=True)
303
304
        teacher = T5ForConditionalGeneration.from_pretrained(hparams.teacher)
        n_layer = hparams.student_decoder_layers
305
        assert n_layer == hparams.student_encoder_layers  # TODO(SS): relax this constraint so that we can do 12-6.
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        d_layers_to_copy = get_layers_to_copy(n_layer, len(teacher.decoder.block))
        e_layers_to_copy: List = get_layers_to_copy(n_layer, len(teacher.encoder.block))
        student_updates = {"num_layers": n_layer}
        hparams.d_layer_to_copy = d_layers_to_copy
        hparams.e_layer_to_copy = e_layers_to_copy
        kw = teacher.config.to_diff_dict()

        kw.update(student_updates)
        # Copy weights
        student_cfg = T5Config(**kw)
        student = T5ForConditionalGeneration(student_cfg)
        student, _ = init_student(student, teacher)
        self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
        Path(hparams.output_dir).mkdir(exist_ok=True)
        task_specific_params = student.config.task_specific_params
        if task_specific_params is not None:
322
323
324
325
326
327
328
            student.config.update(task_specific_params.get("summarization", {}))  # TODO: dont hardcode
        save_dir = self.output_dir.joinpath("student")
        save_dir.mkdir(exist_ok=True)

        student.save_pretrained(save_dir)
        hparams.model_name_or_path = str(save_dir)
        return student, student_cfg, teacher
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

    def freeze_embeds(self):
        freeze_params(self.model.shared)
        for d in [self.model.encoder, self.model.decoder]:
            freeze_params(d.embed_tokens)

    def sanity_check_gradients(self):
        """T5"""
        assert_all_frozen(self.teacher)
        assert_all_frozen(self.model.decoder.embed_tokens)
        assert_all_frozen(self.model.encoder.embed_tokens)
        if self.different_encoder:
            assert any_requires_grad(self.model.encoder)
        else:
            freeze_params(self.model.encoder)
            del self.teacher.model.encoder
        if self.different_decoder:
            assert any_requires_grad(self.model.decoder)
        else:
            freeze_params(self.model.decoder)  # TODO(SS): very suspicious

    def _step(self, batch):
        pad_token_id = self.tokenizer.pad_token_id
        source_ids, source_mask, y = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
        decoder_input_ids = y[:, :-1].contiguous()
        labels = y[:, 1:].clone()
        labels[y[:, 1:] == pad_token_id] = -100
        # noinspection PyCallingNonCallable
        dec_mask = decoder_input_ids.ne(pad_token_id)

        sloss, slogits, dec_hidden, enc_outputs, enc_hidden_state = self(
            source_ids,
            attention_mask=source_mask,
            decoder_input_ids=decoder_input_ids,
            labels=labels,
            output_hidden_states=True,
            output_attentions=False,
            use_cache=False,
        )

        def zero_tensor():
            return torch.tensor(0.0).type_as(sloss)

        loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
        if self.different_encoder:
            with torch.no_grad():
                teacher_enc_outputs, teacher_enc_hid = self.teacher.encoder(
                    source_ids, attention_mask=source_mask, output_hidden_states=True, use_cache=False,
                )
            if self.hparams.alpha_encoder_loss > 0:
                loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, source_mask)

            hid_loss_enc = self.calc_hidden_loss(
                source_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
            )

        teacher_enc_outputs = (enc_outputs,)
        assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)

        with torch.no_grad():
            tloss, tlogits, tdec_hidden, _ = self.teacher(
                source_ids,
                attention_mask=source_mask,
                encoder_outputs=teacher_enc_outputs,
                decoder_input_ids=decoder_input_ids,
                lm_labels=labels,
                output_hidden_states=True,
                use_cache=False,
            )

        loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, slogits, tlogits)
        if self.alpha_hid > 0:
            hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_layer_to_copy)

        blended_loss = (
            self.alpha_ce * loss_ce
            + self.alpha_mlm * sloss
            + self.hparams.alpha_encoder_loss * loss_encoder
            + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
        )
        return blended_loss, loss_ce, sloss, loss_encoder, hid_loss_enc, hid_loss_dec


def create_module(args):
    t5 = "t5" in args.model_name_or_path
    if args.no_teacher:
415
416
417
        module_cls = TranslationModule if "translation" in args.task else SummarizationModule
    elif t5:  # DISTILL T5 WITH TEACHER FOR SUMMARIZATION
        assert "translation" not in args.task, "t5 translation distillation not supported"
418
        module_cls = T5SummarizationDistiller
419
420
    else:  # DISTILL WITH TEACHER
        module_cls = BartTranslationDistiller if "translation" in args.task else BartSummarizationDistiller
421
    args.setup_cls: str = module_cls.__name__
422
    print(f"using module {args.setup_cls}")
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    model = module_cls(args)
    return model


def evaluate_checkpoint(ckpt_path: Path, dest_dir=None):
    exp_dir = ckpt_path.parent
    if dest_dir is None:
        dest_dir = exp_dir
    clash = list(dest_dir.glob("test_generations*"))
    if clash:
        print(f"SKIPPING to avoid overwriting {clash}")
    ckpt = torch.load(ckpt_path, map_location="cpu")
    if "hparams" in ckpt:
        args = argparse.Namespace(**ckpt["hparams"])
    else:
        args = argparse.Namespace(**pickle_load(exp_dir / "hparams.pkl"))
    args.resume_from_checkpoint = str(ckpt_path)
    args.do_train = False
    args.output_dir = str(dest_dir)
    args.n_gpu = 1
    args.eval_batch_size = 16
    Path(args.output_dir).mkdir(exist_ok=True)
    model = create_module(args)
    trainer: pl.Trainer = generic_train(model, args, early_stopping_callback=False)
    trainer.test(model)


def get_layers_to_copy(n_to_get, tot):
    all_layers = list(range(tot))
    if tot == 12:  # Alternating for special cases
453
454
455
        layers_to_copy = {  # maps  num layers in student -> which teacher layers to copy
            1: [0],
            2: [0, 6],
456
457
            3: [0, 6, 11],
            4: [0, 4, 8, 11],
458
            6: [0, 2, 4, 7, 9, 11],
459
460
461
462
            9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
            12: all_layers,
        }
        return layers_to_copy[n_to_get]
463
464
465
466
467
468
469
470
471
472
473
474
    elif tot == 16:
        layers_to_copy = {  # maps  num layers in student -> which teacher layers to copy
            1: [0],
            2: [0, 8],
            3: [0, 8, 15],
            4: [0, 5, 10, 15],
            6: [0, 3, 6, 9, 12, 15],
            8: [0, 2, 4, 6, 8, 10, 12, 15],
            9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
            16: all_layers,
        }
        return layers_to_copy[n_to_get]
475
    else:
476
        return all_layers[:n_to_get]  # TODO: better version on theseus-bart branch
477
478
479
480
481
482
483
484
485
486
487
488
489


def distill_main(args):
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    model = create_module(args)
    return ft_main(args, model=model)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
490
    parser = pl.Trainer.add_argparse_args(parser)
491
    parser = BartSummarizationDistiller.add_model_specific_args(parser, os.getcwd())
492
493
494
    args = parser.parse_args()

    distill_main(args)