model_sharing.rst 11.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Model sharing and uploading
=======================================================================================================================

In this page, we will show you how to share a model you have trained or fine-tuned on new data with the community on
the `model hub <https://huggingface.co/models>`__.

.. note::

    You will need to create an account on `huggingface.co <https://huggingface.co/join>`__ for this.

    Optionally, you can join an existing organization or create a new one.

Prepare your model for uploading
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We have seen in the :doc:`training tutorial <training>`: how to fine-tune a model on a given task. You have probably
done something similar on your task, either using the model directly in your own training loop or using the
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
:class:`~.transformers.Trainer`/:class:`~.transformers.TFTrainer` class. Let's see how you can share the result on the
`model hub <https://huggingface.co/models>`__.
Sylvain Gugger's avatar
Sylvain Gugger committed
20

Lysandre Debut's avatar
Lysandre Debut committed
21
Model versioning
Sylvain Gugger's avatar
Sylvain Gugger committed
22
23
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Lysandre Debut's avatar
Lysandre Debut committed
24
25
26
27
28
29
30
31
32
33
34
Since version v3.5.0, the model hub has built-in model versioning based on git and git-lfs. It is based on the paradigm
that one model *is* one repo.

This allows:

- built-in versioning
- access control
- scalability

This is built around *revisions*, which is a way to pin a specific version of a model, using a commit hash, tag or
branch.
Sylvain Gugger's avatar
Sylvain Gugger committed
35

Lysandre Debut's avatar
Lysandre Debut committed
36
For instance:
Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
39

.. code-block::

40
    >>> model = AutoModel.from_pretrained(
Lysandre Debut's avatar
Lysandre Debut committed
41
42
43
44
45
46
47
48
    >>>   "julien-c/EsperBERTo-small",
    >>>   revision="v2.0.1" # tag name, or branch name, or commit hash
    >>> )

Basic steps
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In order to upload a model, you'll need to first create a git repo. This repo will live on the model hub, allowing
49
50
51
52
53
users to clone it and you (and your organization members) to push to it.

You can create a model repo directly from the website, `here <https://huggingface.co/new>`.

Alternatively, you can use the ``transformers-cli``. The next steps describe that process:
Sylvain Gugger's avatar
Sylvain Gugger committed
54

55
Go to a terminal and run the following command. It should be in the virtual environment where you installed 馃
Lysandre Debut's avatar
Lysandre Debut committed
56
Transformers, since that command :obj:`transformers-cli` comes from the library.
Sylvain Gugger's avatar
Sylvain Gugger committed
57

Sylvain Gugger's avatar
Sylvain Gugger committed
58
.. code-block:: bash
Sylvain Gugger's avatar
Sylvain Gugger committed
59

Lysandre Debut's avatar
Lysandre Debut committed
60
61
    transformers-cli login

Sylvain Gugger's avatar
Sylvain Gugger committed
62

Lysandre Debut's avatar
Lysandre Debut committed
63
Once you are logged in with your model hub credentials, you can start building your repositories. To create a repo:
Sylvain Gugger's avatar
Sylvain Gugger committed
64

Sylvain Gugger's avatar
Sylvain Gugger committed
65
.. code-block:: bash
Sylvain Gugger's avatar
Sylvain Gugger committed
66

Lysandre Debut's avatar
Lysandre Debut committed
67
    transformers-cli repo create your-model-name
Sylvain Gugger's avatar
Sylvain Gugger committed
68

69
This creates a repo on the model hub, which can be cloned.
Sylvain Gugger's avatar
Sylvain Gugger committed
70

Sylvain Gugger's avatar
Sylvain Gugger committed
71
.. code-block:: bash
Sylvain Gugger's avatar
Sylvain Gugger committed
72

Lysandre Debut's avatar
Lysandre Debut committed
73
74
    git clone https://huggingface.co/username/your-model-name

75
76
77
78
79
80
81
82
83
84
    # Make sure you have git-lfs installed
    # (https://git-lfs.github.com/)
    git lfs install

When you have your local clone of your repo and lfs installed, you can then add/remove from that clone as you would
with any other git repo.

.. code-block:: bash

    # Commit as usual
Lysandre Debut's avatar
Lysandre Debut committed
85
86
87
88
89
90
    cd your-model-name
    echo "hello" >> README.md
    git add . && git commit -m "Update from $USER"

We are intentionally not wrapping git too much, so as to stay intuitive and easy-to-use.

Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
94
95
96
97
98
99

Make your model work on all frameworks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. 
    TODO Sylvain: make this automatic during the upload

You probably have your favorite framework, but so will other users! That's why it's best to upload your model with both
PyTorch `and` TensorFlow checkpoints to make it easier to use (if you skip this step, users will still be able to load
Sylvain Gugger's avatar
Sylvain Gugger committed
100
101
102
103
104
your model in another framework, but it will be slower, as it will have to be converted on the fly). Don't worry, it's
super easy to do (and in a future version, it will all be automatic). You will need to install both PyTorch and
TensorFlow for this step, but you don't need to worry about the GPU, so it should be very easy. Check the `TensorFlow
installation page <https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available>`__ and/or the `PyTorch
installation page <https://pytorch.org/get-started/locally/#start-locally>`__ to see how.
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106

First check that your model class exists in the other framework, that is try to import the same model by either adding
Sylvain Gugger's avatar
Sylvain Gugger committed
107
or removing TF. For instance, if you trained a :class:`~transformers.DistilBertForSequenceClassification`, try to type
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
111
    >>> from transformers import TFDistilBertForSequenceClassification
Sylvain Gugger's avatar
Sylvain Gugger committed
112

Sylvain Gugger's avatar
Sylvain Gugger committed
113
and if you trained a :class:`~transformers.TFDistilBertForSequenceClassification`, try to type
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
117
    >>> from transformers import DistilBertForSequenceClassification
Sylvain Gugger's avatar
Sylvain Gugger committed
118
119
120
121
122
123
124
125
126

This will give back an error if your model does not exist in the other framework (something that should be pretty rare
since we're aiming for full parity between the two frameworks). In this case, skip this and go to the next step.

Now, if you trained your model in PyTorch and have to create a TensorFlow version, adapt the following code to your
model class:

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
127
128
    >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
    >>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
Sylvain Gugger's avatar
Sylvain Gugger committed
129
130
131
132
133
134

and if you trained your model in TensorFlow and have to create a PyTorch version, adapt the following code to your
model class:

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
135
136
    >>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
    >>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139

That's all there is to it!

Lysandre Debut's avatar
Lysandre Debut committed
140
Check the directory before pushing to the model hub.
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
144
145
146
147
148
149
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Make sure there are no garbage files in the directory you'll upload. It should only have:

- a `config.json` file, which saves the :doc:`configuration <main_classes/configuration>` of your model ;
- a `pytorch_model.bin` file, which is the PyTorch checkpoint (unless you can't have it for some reason) ;
- a `tf_model.h5` file, which is the TensorFlow checkpoint (unless you can't have it for some reason) ;
- a `special_tokens_map.json`, which is part of your :doc:`tokenizer <main_classes/tokenizer>` save;
- a `tokenizer_config.json`, which is part of your :doc:`tokenizer <main_classes/tokenizer>` save;
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
- files named `vocab.json`, `vocab.txt`, `merges.txt`, or similar, which contain the vocabulary of your tokenizer, part
  of your :doc:`tokenizer <main_classes/tokenizer>` save;
Sylvain Gugger's avatar
Sylvain Gugger committed
152
153
154
155
156
- maybe a `added_tokens.json`, which is part of your :doc:`tokenizer <main_classes/tokenizer>` save.

Other files can safely be deleted.


Lysandre Debut's avatar
Lysandre Debut committed
157
158
Uploading your files
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylvain Gugger's avatar
Sylvain Gugger committed
159

Lysandre Debut's avatar
Lysandre Debut committed
160
161
Once the repo is cloned, you can add the model, configuration and tokenizer files. For instance, saving the model and
tokenizer files:
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163
164

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
165
166
    >>> model.save_pretrained("path/to/repo/clone/your-model-name")
    >>> tokenizer.save_pretrained("path/to/repo/clone/your-model-name")
Sylvain Gugger's avatar
Sylvain Gugger committed
167

Lysandre Debut's avatar
Lysandre Debut committed
168
Or, if you're using the Trainer API
Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
171

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
172
    >>> trainer.save_model("path/to/awesome-name-you-picked")
Sylvain Gugger's avatar
Sylvain Gugger committed
173
    >>> tokenizer.save_pretrained("path/to/repo/clone/your-model-name")
Sylvain Gugger's avatar
Sylvain Gugger committed
174

Lysandre Debut's avatar
Lysandre Debut committed
175
176
You can then add these files to the staging environment and verify that they have been correctly staged with the ``git
status`` command:
Sylvain Gugger's avatar
Sylvain Gugger committed
177

Sylvain Gugger's avatar
Sylvain Gugger committed
178
.. code-block:: bash
Sylvain Gugger's avatar
Sylvain Gugger committed
179

Lysandre Debut's avatar
Lysandre Debut committed
180
181
    git add --all
    git status
Sylvain Gugger's avatar
Sylvain Gugger committed
182

Lysandre Debut's avatar
Lysandre Debut committed
183
Finally, the files should be comitted:
Sylvain Gugger's avatar
Sylvain Gugger committed
184

Sylvain Gugger's avatar
Sylvain Gugger committed
185
.. code-block:: bash
Sylvain Gugger's avatar
Sylvain Gugger committed
186

Lysandre Debut's avatar
Lysandre Debut committed
187
    git commit -m "First version of the your-model-name model and tokenizer."
Sylvain Gugger's avatar
Sylvain Gugger committed
188

Lysandre Debut's avatar
Lysandre Debut committed
189
And pushed to the remote:
Sylvain Gugger's avatar
Sylvain Gugger committed
190

Sylvain Gugger's avatar
Sylvain Gugger committed
191
.. code-block:: bash
Sylvain Gugger's avatar
Sylvain Gugger committed
192

Lysandre Debut's avatar
Lysandre Debut committed
193
    git push
Sylvain Gugger's avatar
Sylvain Gugger committed
194

Lysandre Debut's avatar
Lysandre Debut committed
195
This will upload the folder containing the weights, tokenizer and configuration we have just prepared.
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
198
199
200
201
202
203


Add a model card
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To make sure everyone knows what your model can do, what its limitations and potential bias or ethetical
considerations, please add a README.md model card to the 馃 Transformers repo under `model_cards/`. It should then be
placed in a subfolder with your username or organization, then another subfolder named like your model
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
(`awesome-name-you-picked`). Or just click on the "Create a model card on GitHub" button on the model page, it will get
you directly to the right location. If you need one, `here <https://github.com/huggingface/model_card>`__ is a model
card template (meta-suggestions are welcome).
Sylvain Gugger's avatar
Sylvain Gugger committed
207
208
209
210

If your model is fine-tuned from another model coming from the model hub (all 馃 Transformers pretrained models do),
don't forget to link to its model card so that people can fully trace how your model was built.

Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
If you have never made a pull request to the 馃 Transformers repo, look at the :doc:`contributing guide <contributing>`
to see the steps to follow.
Sylvain Gugger's avatar
Sylvain Gugger committed
213

Sylvain Gugger's avatar
Sylvain Gugger committed
214
.. note::
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
217
218
219
220
221
222
223
224
225
226
227

    You can also send your model card in the folder you uploaded with the CLI by placing it in a `README.md` file
    inside `path/to/awesome-name-you-picked/`.

Using your model
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Your model now has a page on huggingface.co/models 馃敟

Anyone can load it from code:

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
228
229
    >>> tokenizer = AutoTokenizer.from_pretrained("namespace/awesome-name-you-picked")
    >>> model = AutoModel.from_pretrained("namespace/awesome-name-you-picked")
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231


Lysandre Debut's avatar
Lysandre Debut committed
232
You may specify a revision by using the ``revision`` flag in the ``from_pretrained`` method:
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
235

.. code-block::

Lysandre Debut's avatar
Lysandre Debut committed
236
237
238
239
    >>> tokenizer = AutoTokenizer.from_pretrained(
    >>>   "julien-c/EsperBERTo-small",
    >>>   revision="v2.0.1" # tag name, or branch name, or commit hash
    >>> )
Sylvain Gugger's avatar
Sylvain Gugger committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

Workflow in a Colab notebook
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you're in a Colab notebook (or similar) with no direct access to a terminal, here is the workflow you can use to
upload your model. You can execute each one of them in a cell by adding a ! at the beginning.

First you need to install `git-lfs` in the environment used by the notebook:

.. code-block:: bash

    sudo apt-get install git-lfs

Then you can use the :obj:`transformers-cli` to create your new repo:


.. code-block:: bash

    transformers-cli login
    transformers-cli repo create your-model-name

Once it's created, you can clone it and configure it (replace username by your username on huggingface.co):

.. code-block:: bash

265
266
267
268
269
    git clone https://username:password@huggingface.co/username/your-model-name
    # Alternatively if you have a token,
    # you can use it instead of your password
    git clone https://username:token@huggingface.co/username/your-model-name

Sylvain Gugger's avatar
Sylvain Gugger committed
270
271
272
    cd your-model-name
    git lfs install
    git config --global user.email "email@example.com"
273
274
    # Tip: using the same email than for your huggingface.co account will link your commits to your profile
    git config --global user.name "Your name"
Sylvain Gugger's avatar
Sylvain Gugger committed
275

276
277
Once you've saved your model inside, and your clone is setup with the right remote URL, you can add it and push it with
usual git commands.
Sylvain Gugger's avatar
Sylvain Gugger committed
278
279
280
281
282

.. code-block:: bash

    git add .
    git commit -m "Initial commit"
283
    git push