"tests/vscode:/vscode.git/clone" did not exist on "4156f517ce0f00e0b7842410542aad5fe37e73cf"
test_modeling_tf_encoder_decoder.py 48.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import copy
18
19
20
21
22
23
24
25
26
27
28
import os
import tempfile
import unittest

import numpy as np

from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import is_pt_tf_cross_test, require_tf, require_torch, slow, torch_device

from .test_modeling_tf_bert import TFBertModelTester
from .test_modeling_tf_common import ids_tensor
29
from .test_modeling_tf_gpt2 import TFGPT2ModelTester
30
31
32
33
34
from .test_modeling_tf_rembert import TFRemBertModelTester
from .test_modeling_tf_roberta import TFRobertaModelTester


if is_tf_available():
35
36
    import tensorflow as tf

37
38
39
40
41
42
43
44
45
    from transformers import (
        AutoConfig,
        AutoTokenizer,
        EncoderDecoderConfig,
        TFAutoModel,
        TFAutoModelForCausalLM,
        TFBertLMHeadModel,
        TFBertModel,
        TFEncoderDecoderModel,
46
        TFGPT2LMHeadModel,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        TFRemBertForCausalLM,
        TFRemBertModel,
        TFRobertaForCausalLM,
        TFRobertaModel,
    )
    from transformers.modeling_tf_outputs import TFBaseModelOutput

if is_torch_available():
    import torch

    from transformers import BertLMHeadModel, BertModel, EncoderDecoderModel


@require_tf
class TFEncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
        raise NotImplementedError

    def prepare_config_and_inputs(self):
        raise NotImplementedError

    def get_pretrained_model(self):
        raise NotImplementedError

    def check_encoder_decoder_model_from_pretrained_configs(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = TFEncoderDecoderModel(encoder_decoder_config)

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )

    def check_encoder_decoder_model(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
        self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )

        encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_hidden_states)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=None,
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )

    def check_encoder_decoder_model_from_pretrained(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        return_dict,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
        enc_dec_model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            return_dict=True,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )

    def check_save_and_load(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)

        outputs = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
        out_2 = np.array(outputs[0])
        out_2[np.isnan(out_2)] = 0

        with tempfile.TemporaryDirectory() as tmpdirname:
            enc_dec_model.save_pretrained(tmpdirname)
            enc_dec_model = TFEncoderDecoderModel.from_pretrained(tmpdirname)

            after_outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_1 = np.array(after_outputs[0])
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def check_encoder_decoder_model_labels(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)

        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            labels=labels,
        )

        # Make sure `loss` exist
241
        self.assertIn("loss", outputs_encoder_decoder)
242
243

        batch_size, seq_len = decoder_input_ids.shape
244
        expected_shape = (batch_size, seq_len, decoder_config.vocab_size)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        self.assertEqual(outputs_encoder_decoder["logits"].shape, expected_shape)
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )

    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        # make the decoder inputs a different shape from the encoder inputs to harden the test
        decoder_input_ids = decoder_input_ids[:, :-1]
        decoder_attention_mask = decoder_attention_mask[:, :-1]
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
        )

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

        self.assertEqual(
            encoder_attentions[0].shape[-3:], (config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1])
        )

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
            1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
        )
        self.assertEqual(
            cross_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len, input_ids.shape[-1]),
        )

    def check_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(tuple(generated_output.shape.as_list()), (input_ids.shape[0],) + (decoder_config.max_length,))

315
316
317
318
319
320
321
322
    def check_pt_tf_equivalence(self, pt_model, tf_model, inputs_dict):

        pt_model.to(torch_device)
        pt_model.eval()

        # prepare inputs
        tf_inputs = inputs_dict
        pt_inputs = {k: torch.tensor(v.numpy()) for k, v in tf_inputs.items()}
323
324
        if "labels" in pt_inputs:
            pt_inputs["labels"] = pt_inputs["labels"].type(torch.LongTensor)
325
326
327
328

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs).to_tuple()

329
330
331
332
        tf_outputs = tf_model(**inputs_dict)
        if "loss" in tf_outputs:
            tf_outputs.loss = tf.math.reduce_mean(tf_outputs.loss)
        tf_outputs = tf_outputs.to_tuple()
333
        self.assertEqual(len(tf_outputs), len(pt_outputs), "Output lengths differ between TF and PyTorch")
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
        for tf_output, pt_output in zip(tf_outputs, pt_outputs):
            self.assert_almost_equals(tf_output.numpy(), pt_output.numpy(), 1e-3)

        # PT -> TF
        with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:

            pt_model.encoder.save_pretrained(encoder_tmp_dirname)
            pt_model.decoder.save_pretrained(decoder_tmp_dirname)
            tf_model_loaded = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
                encoder_tmp_dirname, decoder_tmp_dirname, encoder_from_pt=True, decoder_from_pt=True
            )
            # This is only for copying some specific attributes of this particular model.
            tf_model_loaded.config = pt_model.config

349
350
351
352
        tf_outputs_loaded = tf_model_loaded(**inputs_dict)
        if "loss" in tf_outputs_loaded:
            tf_outputs_loaded.loss = tf.math.reduce_mean(tf_outputs_loaded.loss)
        tf_outputs_loaded = tf_outputs_loaded.to_tuple()
353
        self.assertEqual(len(tf_outputs_loaded), len(pt_outputs), "Output lengths differ between TF and PyTorch")
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        for tf_output_loaded, pt_output in zip(tf_outputs_loaded, pt_outputs):
            self.assert_almost_equals(tf_output_loaded.numpy(), pt_output.numpy(), 1e-3)

    def check_equivalence_pt_to_tf(self, config, decoder_config, inputs_dict):

        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)

        pt_model = EncoderDecoderModel(encoder_decoder_config)

        with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:

            pt_model.encoder.save_pretrained(encoder_tmp_dirname)
            pt_model.decoder.save_pretrained(decoder_tmp_dirname)
            tf_model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
                encoder_tmp_dirname, decoder_tmp_dirname, encoder_from_pt=True, decoder_from_pt=True
            )
            # This is only for copying some specific attributes of this particular model.
            tf_model.config = pt_model.config

        self.check_pt_tf_equivalence(pt_model, tf_model, inputs_dict)

    def check_equivalence_tf_to_pt(self, config, decoder_config, inputs_dict):

        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)

        # Using `_tf_model`, the test will fail, because the weights of `_tf_model` get extended before saving
        # the encoder/decoder models.
        # There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
        #   https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
        #   (the change in `src/transformers/modeling_tf_utils.py`)
        _tf_model = TFEncoderDecoderModel(encoder_decoder_config)
        # Make sure model is built
        _tf_model(**inputs_dict)

        # Using `tf_model` to pass the test.
        encoder = _tf_model.encoder.__class__(encoder_decoder_config.encoder)
        decoder = _tf_model.decoder.__class__(encoder_decoder_config.decoder)
        # Make sure models are built
        encoder(encoder.dummy_inputs)
        decoder(decoder.dummy_inputs)
        tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder)

        with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:

            tf_model.encoder.save_pretrained(encoder_tmp_dirname)
            tf_model.decoder.save_pretrained(decoder_tmp_dirname)
            pt_model = EncoderDecoderModel.from_encoder_decoder_pretrained(
                encoder_tmp_dirname, decoder_tmp_dirname, encoder_from_tf=True, decoder_from_tf=True
            )
            # This is only for copying some specific attributes of this particular model.
            pt_model.config = tf_model.config

        self.check_pt_tf_equivalence(pt_model, tf_model, inputs_dict)

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    def test_encoder_decoder_model(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model(**input_ids_dict)

    def test_encoder_decoder_model_from_pretrained_configs(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)

    def test_encoder_decoder_model_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)

    def test_save_and_load_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**input_ids_dict)

    def test_encoder_decoder_model_labels(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_labels(**input_ids_dict)

    def test_encoder_decoder_model_output_attentions(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_output_attentions(**input_ids_dict)

    def test_encoder_decoder_model_generate(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**input_ids_dict)

441
442
443
444
445
446
447
448
    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and tf is {diff} (>= {tol}).")

    @is_pt_tf_cross_test
    def test_pt_tf_equivalence(self):

        config_inputs_dict = self.prepare_config_and_inputs()
449
450
        labels = config_inputs_dict.pop("decoder_token_labels")

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        # Keep only common arguments
        arg_names = [
            "config",
            "input_ids",
            "attention_mask",
            "decoder_config",
            "decoder_input_ids",
            "decoder_attention_mask",
            "encoder_hidden_states",
        ]
        config_inputs_dict = {k: v for k, v in config_inputs_dict.items() if k in arg_names}

        config = config_inputs_dict.pop("config")
        decoder_config = config_inputs_dict.pop("decoder_config")

        inputs_dict = config_inputs_dict
        # `encoder_hidden_states` is not used in model call/forward
        del inputs_dict["encoder_hidden_states"]

470
471
472
        inputs_dict_with_labels = copy.copy(inputs_dict)
        inputs_dict_with_labels["labels"] = labels

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        # Avoid the case where a sequence has no place to attend (after combined with the causal attention mask)
        batch_size = inputs_dict["decoder_attention_mask"].shape[0]
        inputs_dict["decoder_attention_mask"] = tf.constant(
            np.concatenate([np.ones(shape=(batch_size, 1)), inputs_dict["decoder_attention_mask"][:, 1:]], axis=1)
        )

        # TF models don't use the `use_cache` option and cache is not returned as a default.
        # So we disable `use_cache` here for PyTorch model.
        decoder_config.use_cache = False

        self.assertTrue(decoder_config.cross_attention_hidden_size is None)

        # check without `enc_to_dec_proj` projection
        self.assertTrue(config.hidden_size == decoder_config.hidden_size)
        self.check_equivalence_pt_to_tf(config, decoder_config, inputs_dict)
        self.check_equivalence_tf_to_pt(config, decoder_config, inputs_dict)

490
491
492
493
        # check equivalence with labels
        self.check_equivalence_pt_to_tf(config, decoder_config, inputs_dict_with_labels)
        self.check_equivalence_tf_to_pt(config, decoder_config, inputs_dict_with_labels)

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        # This is not working, because pt/tf equivalence test for encoder-decoder use `from_encoder_decoder_pretrained`,
        # which randomly initialize `enc_to_dec_proj`.
        # # check `enc_to_dec_proj` work as expected
        # decoder_config.hidden_size = decoder_config.hidden_size * 2
        # self.assertTrue(config.hidden_size != decoder_config.hidden_size)
        # self.check_equivalence_pt_to_tf(config, decoder_config, inputs_dict)
        # self.check_equivalence_tf_to_pt(config, decoder_config, inputs_dict)

        # Let's just check `enc_to_dec_proj` can run for now
        decoder_config.hidden_size = decoder_config.hidden_size * 2
        self.assertTrue(config.hidden_size != decoder_config.hidden_size)
        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        model = TFEncoderDecoderModel(encoder_decoder_config)
        model(**inputs_dict)

509
510
511
512
    @slow
    def test_real_model_save_load_from_pretrained(self):
        model_2 = self.get_pretrained_model()
        input_ids = ids_tensor([13, 5], model_2.config.encoder.vocab_size)
513
        decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        attention_mask = ids_tensor([13, 5], vocab_size=2)

        outputs = model_2(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
        )
        out_2 = np.array(outputs[0])
        out_2[np.isnan(out_2)] = 0

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model_2.save_pretrained(tmp_dirname)
            model_1 = TFEncoderDecoderModel.from_pretrained(tmp_dirname)

            after_outputs = model_1(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
            )
            out_1 = np.array(after_outputs[0])
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)


@require_tf
class TFBertEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = TFBertModel(config, name="encoder")
        decoder_model = TFBertLMHeadModel(decoder_config, name="decoder")
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = TFBertModelTester(self, batch_size=13)
        model_tester_decoder = TFBertModelTester(self, batch_size=13)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            attention_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_attention_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    @slow
    @is_pt_tf_cross_test
    def test_bert2bert_summarization(self):

        from transformers import EncoderDecoderModel

        tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

602
        """Not working, because pt checkpoint has `encoder.encoder.layer...` while tf model has `encoder.bert.encoder.layer...`.
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        (For Bert decoder, there is no issue, because `BertModel` is wrapped into `decoder` as `bert`)
        model = TFEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16", from_pt=True)
        """

        # workaround to load from pt
        _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
        _model.encoder.save_pretrained("./encoder")
        _model.decoder.save_pretrained("./decoder")
        model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
            "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
        )
        model.config = _model.config

        ARTICLE_STUDENTS = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents."""
        EXPECTED_SUMMARY_STUDENTS = """sae was founded in 1856, five years before the civil war. the fraternity has had to work hard to change recently. the university of oklahoma president says the university's affiliation with the fraternity is permanently done. the sae has had a string of members in recent months."""

        input_dict = tokenizer(ARTICLE_STUDENTS, return_tensors="tf")
        output_ids = model.generate(input_ids=input_dict["input_ids"], max_length=None).numpy().tolist()
        summary = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        self.assertEqual(summary, [EXPECTED_SUMMARY_STUDENTS])

Yih-Dar's avatar
Yih-Dar committed
625
626
627
628
629
630
631
632
        # Test with the TF checkpoint
        model = TFEncoderDecoderModel.from_pretrained("ydshieh/bert2bert-cnn_dailymail-fp16")

        output_ids = model.generate(input_ids=input_dict["input_ids"], max_length=None).numpy().tolist()
        summary = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        self.assertEqual(summary, [EXPECTED_SUMMARY_STUDENTS])

633

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
@require_tf
class TFGPT2EncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = TFBertModel(config, name="encoder")
        decoder_model = TFGPT2LMHeadModel(decoder_config, name="decoder")
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = TFBertModelTester(self, batch_size=13)
        model_tester_decoder = TFGPT2ModelTester(self)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            attention_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_attention_mask,
            decoder_head_mask,
            decoder_token_type_ids,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
673
        # disable cache for now
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    @slow
    @is_pt_tf_cross_test
    def test_bert2gpt2_summarization(self):

        from transformers import EncoderDecoderModel

        tokenizer_in = AutoTokenizer.from_pretrained("bert-base-cased")
        tokenizer_out = AutoTokenizer.from_pretrained("gpt2")

        """Not working, because pt checkpoint has `encoder.encoder.layer...` while tf model has `encoder.bert.encoder.layer...`.
        (For GPT2 decoder, there is no issue)
        model = TFEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16", from_pt=True)
        """

        # workaround to load from pt
        _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
        _model.encoder.save_pretrained("./encoder")
        _model.decoder.save_pretrained("./decoder")
        model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
            "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
        )
        model.config = _model.config

        ARTICLE_STUDENTS = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents."""
        EXPECTED_SUMMARY_STUDENTS = """SAS Alpha Epsilon suspended the students, but university president says it's permanent.\nThe fraternity has had to deal with a string of student deaths since 2010.\nSAS has more than 200,000 members, many of whom are students.\nA student died while being forced into excessive alcohol consumption."""

        input_dict = tokenizer_in(ARTICLE_STUDENTS, return_tensors="tf")
        output_ids = model.generate(input_ids=input_dict["input_ids"], max_length=None).numpy().tolist()
        summary = tokenizer_out.batch_decode(output_ids, skip_special_tokens=True)

        self.assertEqual(summary, [EXPECTED_SUMMARY_STUDENTS])


723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
@require_tf
class TFRoBertaEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return TFEncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = TFRobertaModel(config, name="encoder")
        decoder_model = TFRobertaForCausalLM(decoder_config, name="decoder")
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = TFRobertaModelTester(self)
        model_tester_decoder = TFRobertaModelTester(self)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }


@require_tf
class TFRembertEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return TFEncoderDecoderModel.from_encoder_decoder_pretrained("google/rembert", "google/rembert")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = TFRemBertModel(config, name="encoder")
        decoder_model = TFRemBertForCausalLM(decoder_config, name="decoder")
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = TFRemBertModelTester(self)
        model_tester_decoder = TFRemBertModelTester(self)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }


@require_tf
class TFEncoderDecoderModelTest(unittest.TestCase):
    def get_from_encoderdecoder_pretrained_model(self):
        return TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "bert-base-cased")

    def get_decoder_config(self):
        config = AutoConfig.from_pretrained("bert-base-cased")
        config.is_decoder = True
        config.add_cross_attention = True
        return config

    def get_encoderdecoder_model(self):
        return TFEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")

    def get_encoder_decoder_models(self):
        encoder_model = TFBertModel.from_pretrained("bert-base-cased", name="encoder")
        decoder_model = TFBertLMHeadModel.from_pretrained(
            "bert-base-cased", config=self.get_decoder_config(), name="decoder"
        )
        return {"encoder": encoder_model, "decoder": decoder_model}

    def _check_configuration_tie(self, model):
        assert id(model.decoder.config) == id(model.config.decoder)
        assert id(model.encoder.config) == id(model.config.encoder)

    @slow
    def test_configuration_tie(self):
        model = self.get_from_encoderdecoder_pretrained_model()
        self._check_configuration_tie(model)

        model = TFEncoderDecoderModel(**self.get_encoder_decoder_models())
        self._check_configuration_tie(model)

        # # This should be enabled once we upload the TF version of
        # # "patrickvonplaten/bert2bert-cnn_dailymail-fp16" to the Hub.
        # model = self.get_encoderdecoder_model()
        # self._check_configuration_tie(model)


@require_tf
class TFEncoderDecoderModelSaveLoadTests(unittest.TestCase):
    def get_encoder_decoder_config(self):
        encoder_config = AutoConfig.from_pretrained("bert-base-uncased")
        decoder_config = AutoConfig.from_pretrained("bert-base-uncased", is_decoder=True, add_cross_attention=True)
        return EncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)

    def get_encoder_decoder_config_small(self):
        encoder_config = AutoConfig.from_pretrained("hf-internal-testing/tiny-bert")
        decoder_config = AutoConfig.from_pretrained(
            "hf-internal-testing/tiny-bert", is_decoder=True, add_cross_attention=True
        )
        return EncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)

    def test_encoder_decoder_save_load_from_encoder_decoder(self):
        config = self.get_encoder_decoder_config_small()

        # create two random BERT models for bert2bert & initialize weights (+cross_attention weights)
        encoder = TFBertModel(config.encoder)
        encoder(encoder.dummy_inputs)
        decoder = TFBertLMHeadModel(config.decoder)
        decoder(decoder.dummy_inputs)

        encoder_decoder_orig = TFEncoderDecoderModel(encoder=encoder, decoder=decoder)

        input_ids = ids_tensor([13, 5], encoder.config.vocab_size)
        decoder_input_ids = ids_tensor([13, 1], decoder.config.vocab_size)

        logits_orig = encoder_decoder_orig(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits

        with tempfile.TemporaryDirectory() as tmp_dirname:
            encoder_path = os.path.join(tmp_dirname, "encoder")
            decoder_path = os.path.join(tmp_dirname, "decoder")

            encoder.save_pretrained(encoder_path)
            decoder.save_pretrained(decoder_path)

            encoder_decoder = TFEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_path, decoder_path)

        logits_1 = encoder_decoder(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits

        self.assertTrue(logits_orig.numpy().sum() - logits_1.numpy().sum() < 1e-3)

        max_diff = np.max(np.abs(logits_1.numpy() - logits_orig.numpy()))
        self.assertAlmostEqual(max_diff, 0.0, places=4)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            encoder_decoder.save_pretrained(tmp_dirname)
            encoder_decoder = TFEncoderDecoderModel.from_pretrained(tmp_dirname)

        logits_2 = encoder_decoder(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits

        max_diff = np.max(np.abs(logits_2.numpy() - logits_orig.numpy()))
        self.assertAlmostEqual(max_diff, 0.0, places=4)

    @require_torch
    @is_pt_tf_cross_test
    def test_encoder_decoder_save_load_from_encoder_decoder_from_pt(self):
        config = self.get_encoder_decoder_config_small()

        # create two random BERT models for bert2bert & initialize weights (+cross_attention weights)
        encoder_pt = BertModel(config.encoder).to(torch_device).eval()
        decoder_pt = BertLMHeadModel(config.decoder).to(torch_device).eval()

        encoder_decoder_pt = EncoderDecoderModel(encoder=encoder_pt, decoder=decoder_pt).to(torch_device).eval()

        input_ids = ids_tensor([13, 5], encoder_pt.config.vocab_size)
        decoder_input_ids = ids_tensor([13, 1], decoder_pt.config.vocab_size)

        pt_input_ids = torch.tensor(input_ids.numpy(), device=torch_device, dtype=torch.long)
        pt_decoder_input_ids = torch.tensor(decoder_input_ids.numpy(), device=torch_device, dtype=torch.long)

        logits_pt = encoder_decoder_pt(input_ids=pt_input_ids, decoder_input_ids=pt_decoder_input_ids).logits

        # PyTorch => TensorFlow
        with tempfile.TemporaryDirectory() as tmp_dirname_1, tempfile.TemporaryDirectory() as tmp_dirname_2:
            encoder_decoder_pt.encoder.save_pretrained(tmp_dirname_1)
            encoder_decoder_pt.decoder.save_pretrained(tmp_dirname_2)
            encoder_decoder_tf = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
                tmp_dirname_1, tmp_dirname_2, encoder_from_pt=True, decoder_from_pt=True
            )

        logits_tf = encoder_decoder_tf(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits

        max_diff = np.max(np.abs(logits_pt.detach().cpu().numpy() - logits_tf.numpy()))
        self.assertAlmostEqual(max_diff, 0.0, places=3)

Yih-Dar's avatar
Yih-Dar committed
961
962
963
964
965
966
967
968
969
970
        # Make sure `from_pretrained` following `save_pretrained` work and give the same result
        with tempfile.TemporaryDirectory() as tmp_dirname:
            encoder_decoder_tf.save_pretrained(tmp_dirname)
            encoder_decoder_tf = TFEncoderDecoderModel.from_pretrained(tmp_dirname)

            logits_tf_2 = encoder_decoder_tf(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits

            max_diff = np.max(np.abs(logits_tf_2.numpy() - logits_tf.numpy()))
            self.assertAlmostEqual(max_diff, 0.0, places=3)

971
972
973
974
975
976
977
978
979
980
        # TensorFlow => PyTorch
        with tempfile.TemporaryDirectory() as tmp_dirname:
            encoder_decoder_tf.save_pretrained(tmp_dirname)
            encoder_decoder_pt = EncoderDecoderModel.from_pretrained(tmp_dirname, from_tf=True)

        max_diff = np.max(np.abs(logits_pt.detach().cpu().numpy() - logits_tf.numpy()))
        self.assertAlmostEqual(max_diff, 0.0, places=3)

    @slow
    def test_encoder_decoder_from_pretrained(self):
Yih-Dar's avatar
Yih-Dar committed
981
        load_weight_prefix = TFEncoderDecoderModel.load_weight_prefix
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

        config = self.get_encoder_decoder_config()
        encoder_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        decoder_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

        input_ids = encoder_tokenizer("who sings does he love me with reba", return_tensors="tf").input_ids
        decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids

        with tempfile.TemporaryDirectory() as tmp_dirname:

            # Since most of HF's models don't have pretrained cross-attention layers, they are randomly
            # initialized even if we create models using `from_pretrained` method.
            # For the tests, the decoder need to be a model with pretrained cross-attention layers.
            # So we create pretrained models (without `load_weight_prefix`), save them, and later,
            # we load them using `from_pretrained`.
            # (we don't need to do this for encoder, but let's make the code more similar between encoder/decoder)
            encoder = TFAutoModel.from_pretrained("bert-base-uncased", name="encoder")
            # It's necessary to specify `add_cross_attention=True` here.
            decoder = TFAutoModelForCausalLM.from_pretrained(
                "bert-base-uncased", is_decoder=True, add_cross_attention=True, name="decoder"
            )
            pretrained_encoder_dir = os.path.join(tmp_dirname, "pretrained_encoder")
            pretrained_decoder_dir = os.path.join(tmp_dirname, "pretrained_decoder")
            encoder.save_pretrained(pretrained_encoder_dir)
            decoder.save_pretrained(pretrained_decoder_dir)
            del encoder
            del decoder

            enc_dec_model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
                pretrained_encoder_dir,
                pretrained_decoder_dir,
            )
            # check that the from pretrained methods work
            enc_dec_model.save_pretrained(tmp_dirname)
            enc_dec_model = TFEncoderDecoderModel.from_pretrained(tmp_dirname)

            output = enc_dec_model(input_ids, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)

            loss_pretrained = output.loss
            del enc_dec_model

            # Create the model using `__init__` with loaded ``pretrained`` encoder / decoder
            encoder = TFAutoModel.from_pretrained(
                pretrained_encoder_dir, load_weight_prefix=load_weight_prefix, name="encoder"
            )
            decoder = TFAutoModelForCausalLM.from_pretrained(
                pretrained_decoder_dir, load_weight_prefix=load_weight_prefix, name="decoder"
            )
            enc_dec_model = TFEncoderDecoderModel(config=config, encoder=encoder, decoder=decoder)

        output = enc_dec_model(input_ids, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)

        loss_init = output.loss

        max_diff = np.max(np.abs(loss_pretrained - loss_init))
        expected_diff = 0.0

        self.assertAlmostEqual(max_diff, expected_diff, places=4)