run_pplm.py 27.7 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
# coding=utf-8
Rosanne Liu's avatar
Rosanne Liu committed
3

4
# Copyright (c) 2019 Uber Technologies, Inc.
Julien Chaumond's avatar
Julien Chaumond committed
5
#
6
7
8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Julien Chaumond's avatar
Julien Chaumond committed
9
#
10
# http://www.apache.org/licenses/LICENSE-2.0
Julien Chaumond's avatar
Julien Chaumond committed
11
#
12
13
14
15
16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Julien Chaumond's avatar
Julien Chaumond committed
17
18
19
20
21
22

"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95

Example command with discriminator:
23
python examples/run_pplm.py -D sentiment --class_label 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
Julien Chaumond's avatar
Julien Chaumond committed
24
25
26
"""

import argparse
27
import json
Julien Chaumond's avatar
Julien Chaumond committed
28
29
30
31
32
33
34
35
36
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange

Aymeric Augustin's avatar
Aymeric Augustin committed
37
from pplm_classification_head import ClassificationHead
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel
Aymeric Augustin's avatar
Aymeric Augustin committed
41

Julien Chaumond's avatar
Julien Chaumond committed
42
43
44
45
46

PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
47
BIG_CONST = 1e10
Julien Chaumond's avatar
Julien Chaumond committed
48
49

BAG_OF_WORDS_ARCHIVE_MAP = {
50
51
52
53
54
55
56
    "legal": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    "military": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    "politics": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    "religion": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    "science": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    "space": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    "technology": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
Julien Chaumond's avatar
Julien Chaumond committed
61
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
62
63
64
65
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
66
        "pretrained_model": "gpt2-medium",
Julien Chaumond's avatar
Julien Chaumond committed
67
68
    },
    "sentiment": {
Julien Chaumond's avatar
Julien Chaumond committed
69
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
70
71
72
73
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
74
        "pretrained_model": "gpt2-medium",
Julien Chaumond's avatar
Julien Chaumond committed
75
76
77
78
    },
}


79
80
def to_var(x, requires_grad=False, volatile=False, device="cuda"):
    if torch.cuda.is_available() and device == "cuda":
Piero Molino's avatar
Piero Molino committed
81
        x = x.cuda()
82
    elif device != "cuda":
83
        x = x.to(device)
Piero Molino's avatar
Piero Molino committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    return Variable(x, requires_grad=requires_grad, volatile=volatile)


def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
99
100
            return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits)
        return torch.where(logits < batch_mins, torch.ones_like(logits) * -BIG_CONST, logits)
Piero Molino's avatar
Piero Molino committed
101
102


103
def perturb_past(
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    past,
    model,
    last,
    unpert_past=None,
    unpert_logits=None,
    accumulated_hidden=None,
    grad_norms=None,
    stepsize=0.01,
    one_hot_bows_vectors=None,
    classifier=None,
    class_label=None,
    loss_type=0,
    num_iterations=3,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    kl_scale=0.01,
    device="cuda",
123
):
Piero Molino's avatar
Piero Molino committed
124
    # Generate inital perturbed past
125
    grad_accumulator = [(np.zeros(p.shape).astype("float32")) for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
126
127
128
129

    if accumulated_hidden is None:
        accumulated_hidden = 0

130
    if decay:
131
        decay_mask = torch.arange(0.0, 1.0 + SMALL_CONST, 1.0 / (window_length))[1:]
Julien Chaumond's avatar
Julien Chaumond committed
132
133
134
    else:
        decay_mask = 1.0

135
    # TODO fix this comment (SUMANTH)
Piero Molino's avatar
Piero Molino committed
136
    # Generate a mask is gradient perturbated is based on a past window
137
    _, _, _, curr_length, _ = past[0].shape
Piero Molino's avatar
Piero Molino committed
138

139
    if curr_length > window_length and window_length > 0:
140
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple([window_length]) + tuple(past[0].shape[-1:])
Piero Molino's avatar
Piero Molino committed
141

142
        zeros_key_val_shape = (
143
            tuple(past[0].shape[:-2]) + tuple([curr_length - window_length]) + tuple(past[0].shape[-1:])
144
        )
Julien Chaumond's avatar
Julien Chaumond committed
145
146
147
148
149

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

150
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)), dim=-2).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
151
    else:
152
        window_mask = torch.ones_like(past[0]).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
153

154
    # accumulate perturbations for num_iterations
Julien Chaumond's avatar
Julien Chaumond committed
155
    loss_per_iter = []
156
    new_accumulated_hidden = None
157
    for i in range(num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
158
        print("Iteration ", i + 1)
159
        curr_perturbation = [
160
            to_var(torch.from_numpy(p_), requires_grad=True, device=device) for p_ in grad_accumulator
161
162
163
164
165
166
        ]

        # Compute hidden using perturbed past
        perturbed_past = list(map(add, past, curr_perturbation))
        _, _, _, curr_length, _ = curr_perturbation[0].shape
        all_logits, _, all_hidden = model(last, past=perturbed_past)
Piero Molino's avatar
Piero Molino committed
167
        hidden = all_hidden[-1]
168
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden, dim=1).detach()
169
170
171
        # TODO: Check the layer-norm consistency of this with trained discriminator (Sumanth)
        logits = all_logits[:, -1, :]
        probs = F.softmax(logits, dim=-1)
Piero Molino's avatar
Piero Molino committed
172
173
174

        loss = 0.0
        loss_list = []
175
176
177
178
179
180
        if loss_type == PPLM_BOW or loss_type == PPLM_BOW_DISCRIM:
            for one_hot_bow in one_hot_bows_vectors:
                bow_logits = torch.mm(probs, torch.t(one_hot_bow))
                bow_loss = -torch.log(torch.sum(bow_logits))
                loss += bow_loss
                loss_list.append(bow_loss)
Piero Molino's avatar
Piero Molino committed
181
182
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

183
        if loss_type == 2 or loss_type == 3:
Julien Chaumond's avatar
Julien Chaumond committed
184
            ce_loss = torch.nn.CrossEntropyLoss()
185
186
187
188
189
190
            # TODO why we need to do this assignment and not just using unpert_past? (Sumanth)
            curr_unpert_past = unpert_past
            curr_probs = torch.unsqueeze(probs, dim=1)
            wte = model.resize_token_embeddings()
            for _ in range(horizon_length):
                inputs_embeds = torch.matmul(curr_probs, wte.weight.data)
191
                _, curr_unpert_past, curr_all_hidden = model(past=curr_unpert_past, inputs_embeds=inputs_embeds)
192
                curr_hidden = curr_all_hidden[-1]
193
                new_accumulated_hidden = new_accumulated_hidden + torch.sum(curr_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
194

195
            prediction = classifier(new_accumulated_hidden / (curr_length + 1 + horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
196

197
            label = torch.tensor(prediction.shape[0] * [class_label], device=device, dtype=torch.long)
198
            discrim_loss = ce_loss(prediction, label)
Julien Chaumond's avatar
Julien Chaumond committed
199
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
200
201
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
202

Piero Molino's avatar
Piero Molino committed
203
204
        kl_loss = 0.0
        if kl_scale > 0.0:
205
            unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1)
206
207
            unpert_probs = unpert_probs + SMALL_CONST * (unpert_probs <= SMALL_CONST).float().to(device).detach()
            correction = SMALL_CONST * (probs <= SMALL_CONST).float().to(device).detach()
208
            corrected_probs = probs + correction.detach()
209
210
            kl_loss = kl_scale * ((corrected_probs * (corrected_probs / unpert_probs).log()).sum())
            print(" kl_loss", kl_loss.data.cpu().numpy())
211
            loss += kl_loss
Julien Chaumond's avatar
Julien Chaumond committed
212
213

        loss_per_iter.append(loss.data.cpu().numpy())
214
        print(" pplm_loss", (loss - kl_loss).data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
215

216
        # compute gradients
Rosanne Liu's avatar
Rosanne Liu committed
217
        loss.backward()
218
219
220

        # calculate gradient norms
        if grad_norms is not None and loss_type == PPLM_BOW:
Julien Chaumond's avatar
Julien Chaumond committed
221
222
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
223
224
                for index, p_ in enumerate(curr_perturbation)
            ]
Julien Chaumond's avatar
Julien Chaumond committed
225
        else:
226
            grad_norms = [
227
                (torch.norm(p_.grad * window_mask) + SMALL_CONST) for index, p_ in enumerate(curr_perturbation)
228
            ]
Julien Chaumond's avatar
Julien Chaumond committed
229

230
        # normalize gradients
Julien Chaumond's avatar
Julien Chaumond committed
231
        grad = [
232
            -stepsize * (p_.grad * window_mask / grad_norms[index] ** gamma).data.cpu().numpy()
233
234
            for index, p_ in enumerate(curr_perturbation)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
235

236
237
238
239
240
        # accumulate gradient
        grad_accumulator = list(map(add, grad, grad_accumulator))

        # reset gradients, just to make sure
        for p_ in curr_perturbation:
Julien Chaumond's avatar
Julien Chaumond committed
241
242
            p_.grad.data.zero_()

243
        # removing past from the graph
Julien Chaumond's avatar
Julien Chaumond committed
244
        new_past = []
245
246
        for p_ in past:
            new_past.append(p_.detach())
Julien Chaumond's avatar
Julien Chaumond committed
247
248
        past = new_past

249
    # apply the accumulated perturbations to the past
250
    grad_accumulator = [to_var(torch.from_numpy(p_), requires_grad=True, device=device) for p_ in grad_accumulator]
251
    pert_past = list(map(add, past, grad_accumulator))
Julien Chaumond's avatar
Julien Chaumond committed
252

253
    return pert_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
254
255
256


def get_classifier(
257
    name: Optional[str], class_label: Union[str, int], device: str
Julien Chaumond's avatar
Julien Chaumond committed
258
259
260
261
262
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
263
    classifier = ClassificationHead(class_size=params["class_size"], embed_size=params["embed_size"]).to(device)
264
265
    if "url" in params:
        resolved_archive_file = cached_path(params["url"])
266
    elif "path" in params:
267
        resolved_archive_file = params["path"]
268
    else:
269
270
        raise ValueError("Either url or path have to be specified " "in the discriminator model parameters")
    classifier.load_state_dict(torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
271
272
    classifier.eval()

273
274
275
    if isinstance(class_label, str):
        if class_label in params["class_vocab"]:
            label_id = params["class_vocab"][class_label]
Julien Chaumond's avatar
Julien Chaumond committed
276
277
        else:
            label_id = params["default_class"]
278
            print("class_label {} not in class_vocab".format(class_label))
Julien Chaumond's avatar
Julien Chaumond committed
279
280
281
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

282
283
284
    elif isinstance(class_label, int):
        if class_label in set(params["class_vocab"].values()):
            label_id = class_label
Julien Chaumond's avatar
Julien Chaumond committed
285
286
        else:
            label_id = params["default_class"]
287
            print("class_label {} not in class_vocab".format(class_label))
Julien Chaumond's avatar
Julien Chaumond committed
288
289
290
291
292
293
294
295
296
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


297
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) -> List[List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
298
299
300
301
302
303
304
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
305
            words = f.read().strip().split("\n")
306
        bow_indices.append([tokenizer.encode(word.strip(), add_prefix_space=True) for word in words])
Julien Chaumond's avatar
Julien Chaumond committed
307
308
309
    return bow_indices


310
def build_bows_one_hot_vectors(bow_indices, tokenizer, device="cuda"):
Julien Chaumond's avatar
Julien Chaumond committed
311
312
313
314
315
316
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
317
        single_bow = torch.tensor(single_bow).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
318
        num_words = single_bow.shape[0]
319
        one_hot_bow = torch.zeros(num_words, tokenizer.vocab_size).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
320
321
322
323
324
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


325
def full_text_generation(
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    model,
    tokenizer,
    context=None,
    num_samples=1,
    device="cuda",
    bag_of_words=None,
    discrim=None,
    class_label=None,
    length=100,
    stepsize=0.02,
    temperature=1.0,
    top_k=10,
    sample=False,
    num_iterations=3,
    grad_length=10000,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    gm_scale=0.9,
    kl_scale=0.01,
347
    repetition_penalty=1.0,
348
    **kwargs
349
):
350
    classifier, class_id = get_classifier(discrim, class_label, device)
Julien Chaumond's avatar
Julien Chaumond committed
351

352
353
    bow_indices = []
    if bag_of_words:
354
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer)
Piero Molino's avatar
Piero Molino committed
355

356
    if bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
357
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
358
        loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
359

360
361
    elif bag_of_words:
        loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
362
363
364
        print("Using PPLM-BoW")

    elif classifier is not None:
365
        loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
366
367
368
        print("Using PPLM-Discrim")

    else:
369
        raise Exception("Specify either a bag of words or a discriminator")
Julien Chaumond's avatar
Julien Chaumond committed
370

371
    unpert_gen_tok_text, _, _ = generate_text_pplm(
372
373
374
375
376
377
378
379
        model=model,
        tokenizer=tokenizer,
        context=context,
        device=device,
        length=length,
        sample=sample,
        perturb=False,
        repetition_penalty=repetition_penalty,
380
    )
381
    if device == "cuda":
382
        torch.cuda.empty_cache()
Julien Chaumond's avatar
Julien Chaumond committed
383

384
385
386
    pert_gen_tok_texts = []
    discrim_losses = []
    losses_in_time = []
Piero Molino's avatar
Piero Molino committed
387

388
    for i in range(num_samples):
389
        pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm(
390
            model=model,
391
            tokenizer=tokenizer,
392
393
394
395
396
            context=context,
            device=device,
            perturb=True,
            bow_indices=bow_indices,
            classifier=classifier,
397
            class_label=class_id,
398
399
400
401
402
            loss_type=loss_type,
            length=length,
            stepsize=stepsize,
            temperature=temperature,
            top_k=top_k,
403
404
405
            sample=sample,
            num_iterations=num_iterations,
            grad_length=grad_length,
406
            horizon_length=horizon_length,
407
            window_length=window_length,
408
409
            decay=decay,
            gamma=gamma,
410
411
            gm_scale=gm_scale,
            kl_scale=kl_scale,
412
            repetition_penalty=repetition_penalty,
413
        )
414
        pert_gen_tok_texts.append(pert_gen_tok_text)
Julien Chaumond's avatar
Julien Chaumond committed
415
        if classifier is not None:
416
417
            discrim_losses.append(discrim_loss.data.cpu().numpy())
        losses_in_time.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
418

419
    if device == "cuda":
420
        torch.cuda.empty_cache()
Julien Chaumond's avatar
Julien Chaumond committed
421

422
    return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
Julien Chaumond's avatar
Julien Chaumond committed
423

424
425

def generate_text_pplm(
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    model,
    tokenizer,
    context=None,
    past=None,
    device="cuda",
    perturb=True,
    bow_indices=None,
    classifier=None,
    class_label=None,
    loss_type=0,
    length=100,
    stepsize=0.02,
    temperature=1.0,
    top_k=10,
    sample=False,
    num_iterations=3,
    grad_length=10000,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    gm_scale=0.9,
    kl_scale=0.01,
449
    repetition_penalty=1.0,
450
):
451
452
453
454
455
456
    output_so_far = None
    if context:
        context_t = torch.tensor(context, device=device, dtype=torch.long)
        while len(context_t.shape) < 2:
            context_t = context_t.unsqueeze(0)
        output_so_far = context_t
Julien Chaumond's avatar
Julien Chaumond committed
457

458
    # collect one hot vectors for bags of words
459
    one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices, tokenizer, device)
460

Julien Chaumond's avatar
Julien Chaumond committed
461
    grad_norms = None
462
    last = None
463
    unpert_discrim_loss = 0
Julien Chaumond's avatar
Julien Chaumond committed
464
    loss_in_time = []
465
    for i in trange(length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
466
467

        # Get past/probs for current output, except for last word
468
        # Note that GPT takes 2 inputs: past + current_token
Julien Chaumond's avatar
Julien Chaumond committed
469

470
471
472
        # run model forward to obtain unperturbed
        if past is None and output_so_far is not None:
            last = output_so_far[:, -1:]
473
474
            if output_so_far.shape[1] > 1:
                _, past, _ = model(output_so_far[:, :-1])
Piero Molino's avatar
Piero Molino committed
475

476
477
        unpert_logits, unpert_past, unpert_all_hidden = model(output_so_far)
        unpert_last_hidden = unpert_all_hidden[-1]
Piero Molino's avatar
Piero Molino committed
478

479
        # check if we are abowe grad max length
480
481
        if i >= grad_length:
            current_stepsize = stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
482
        else:
483
            current_stepsize = stepsize
Julien Chaumond's avatar
Julien Chaumond committed
484

485
        # modify the past if necessary
486
        if not perturb or num_iterations == 0:
487
            pert_past = past
Julien Chaumond's avatar
Julien Chaumond committed
488
489

        else:
490
            accumulated_hidden = unpert_last_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
491
492
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

493
494
495
496
497
498
499
500
501
502
            if past is not None:
                pert_past, _, grad_norms, loss_this_iter = perturb_past(
                    past,
                    model,
                    last,
                    unpert_past=unpert_past,
                    unpert_logits=unpert_logits,
                    accumulated_hidden=accumulated_hidden,
                    grad_norms=grad_norms,
                    stepsize=current_stepsize,
503
                    one_hot_bows_vectors=one_hot_bows_vectors,
504
                    classifier=classifier,
505
                    class_label=class_label,
506
507
508
                    loss_type=loss_type,
                    num_iterations=num_iterations,
                    horizon_length=horizon_length,
509
                    window_length=window_length,
510
511
                    decay=decay,
                    gamma=gamma,
512
513
                    kl_scale=kl_scale,
                    device=device,
514
515
516
517
                )
                loss_in_time.append(loss_this_iter)
            else:
                pert_past = past
Piero Molino's avatar
Piero Molino committed
518

519
520
        pert_logits, past, pert_all_hidden = model(last, past=pert_past)
        pert_logits = pert_logits[:, -1, :] / temperature  # + SMALL_CONST
521
522
523
524
525
526
527

        for token_idx in set(output_so_far[0].tolist()):
            if pert_logits[0, token_idx] < 0:
                pert_logits[0, token_idx] *= repetition_penalty
            else:
                pert_logits[0, token_idx] /= repetition_penalty

528
        pert_probs = F.softmax(pert_logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
529
530

        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
531
            ce_loss = torch.nn.CrossEntropyLoss()
532
            prediction = classifier(torch.mean(unpert_last_hidden, dim=1))
533
            label = torch.tensor([class_label], device=device, dtype=torch.long)
534
            unpert_discrim_loss = ce_loss(prediction, label)
535
            print("unperturbed discrim loss", unpert_discrim_loss.data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
536
        else:
537
            unpert_discrim_loss = 0
Piero Molino's avatar
Piero Molino committed
538
539

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
540
541
        if perturb:

542
            unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1)
Piero Molino's avatar
Piero Molino committed
543

544
545
            pert_probs = (pert_probs ** gm_scale) * (unpert_probs ** (1 - gm_scale))  # + SMALL_CONST
            pert_probs = top_k_filter(pert_probs, k=top_k, probs=True)  # + SMALL_CONST
Julien Chaumond's avatar
Julien Chaumond committed
546

547
548
549
            # rescale
            if torch.sum(pert_probs) <= 1:
                pert_probs = pert_probs / torch.sum(pert_probs)
Julien Chaumond's avatar
Julien Chaumond committed
550
551

        else:
552
553
            pert_logits = top_k_filter(pert_logits, k=top_k)  # + SMALL_CONST
            pert_probs = F.softmax(pert_logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
554

555
        # sample or greedy
Julien Chaumond's avatar
Julien Chaumond committed
556
        if sample:
557
558
            last = torch.multinomial(pert_probs, num_samples=1)

Julien Chaumond's avatar
Julien Chaumond committed
559
        else:
560
561
562
            _, last = torch.topk(pert_probs, k=1, dim=-1)

        # update context/output_so_far appending the new token
563
        output_so_far = last if output_so_far is None else torch.cat((output_so_far, last), dim=1)
564

565
        print(tokenizer.decode(output_so_far.tolist()[0]))
566
567

    return output_so_far, unpert_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
568
569


570
571
def set_generic_model_params(discrim_weights, discrim_meta):
    if discrim_weights is None:
572
        raise ValueError("When using a generic discriminator, " "discrim_weights need to be specified")
573
    if discrim_meta is None:
574
        raise ValueError("When using a generic discriminator, " "discrim_meta need to be specified")
575

576
    with open(discrim_meta, "r") as discrim_meta_file:
577
        meta = json.load(discrim_meta_file)
578
579
    meta["path"] = discrim_weights
    DISCRIMINATOR_MODELS_PARAMS["generic"] = meta
580
581


582
def run_pplm_example(
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    pretrained_model="gpt2-medium",
    cond_text="",
    uncond=False,
    num_samples=1,
    bag_of_words=None,
    discrim=None,
    discrim_weights=None,
    discrim_meta=None,
    class_label=-1,
    length=100,
    stepsize=0.02,
    temperature=1.0,
    top_k=10,
    sample=False,
    num_iterations=3,
    grad_length=10000,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    gm_scale=0.9,
    kl_scale=0.01,
    seed=0,
    no_cuda=False,
    colorama=False,
608
    repetition_penalty=1.0,
609
):
610
    # set Random seed
611
612
    torch.manual_seed(seed)
    np.random.seed(seed)
Julien Chaumond's avatar
Julien Chaumond committed
613

614
    # set the device
615
616
    device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"

617
    if discrim == "generic":
618
        set_generic_model_params(discrim_weights, discrim_meta)
Julien Chaumond's avatar
Julien Chaumond committed
619

620
    if discrim is not None:
621
622
        pretrained_model = DISCRIMINATOR_MODELS_PARAMS[discrim]["pretrained_model"]
        print("discrim = {}, pretrained_model set " "to discriminator's = {}".format(discrim, pretrained_model))
623

624
    # load pretrained model
625
    model = GPT2LMHeadModel.from_pretrained(pretrained_model, output_hidden_states=True)
Julien Chaumond's avatar
Julien Chaumond committed
626
627
628
    model.to(device)
    model.eval()

629
630
631
    # load tokenizer
    tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)

Piero Molino's avatar
Piero Molino committed
632
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
633
634
635
    for param in model.parameters():
        param.requires_grad = False

636
    # figure out conditioning text
637
    if uncond:
638
        tokenized_cond_text = tokenizer.encode([tokenizer.bos_token])
Julien Chaumond's avatar
Julien Chaumond committed
639
    else:
640
        raw_text = cond_text
Julien Chaumond's avatar
Julien Chaumond committed
641
        while not raw_text:
642
            print("Did you forget to add `--cond_text`? ")
Julien Chaumond's avatar
Julien Chaumond committed
643
            raw_text = input("Model prompt >>> ")
644
        tokenized_cond_text = tokenizer.encode(tokenizer.bos_token + raw_text)
Piero Molino's avatar
Piero Molino committed
645

646
    print("= Prefix of sentence =")
647
    print(tokenizer.decode(tokenized_cond_text))
648
    print()
Piero Molino's avatar
Piero Molino committed
649

650
    # generate unperturbed and perturbed texts
Piero Molino's avatar
Piero Molino committed
651

652
653
654
    # full_text_generation returns:
    # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
    unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        model=model,
        tokenizer=tokenizer,
        context=tokenized_cond_text,
        device=device,
        num_samples=num_samples,
        bag_of_words=bag_of_words,
        discrim=discrim,
        class_label=class_label,
        length=length,
        stepsize=stepsize,
        temperature=temperature,
        top_k=top_k,
        sample=sample,
        num_iterations=num_iterations,
        grad_length=grad_length,
        horizon_length=horizon_length,
        window_length=window_length,
        decay=decay,
        gamma=gamma,
        gm_scale=gm_scale,
        kl_scale=kl_scale,
676
        repetition_penalty=repetition_penalty,
677
678
679
    )

    # untokenize unperturbed text
680
    unpert_gen_text = tokenizer.decode(unpert_gen_tok_text.tolist()[0])
Piero Molino's avatar
Piero Molino committed
681

682
683
684
685
    print("=" * 80)
    print("= Unperturbed generated text =")
    print(unpert_gen_text)
    print()
Piero Molino's avatar
Piero Molino committed
686

687
688
    generated_texts = []

689
    bow_word_ids = set()
690
    if bag_of_words and colorama:
691
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer)
692
693
694
695
696
        for single_bow_list in bow_indices:
            # filtering all words in the list composed of more than 1 token
            filtered = list(filter(lambda x: len(x) <= 1, single_bow_list))
            # w[0] because we are sure w has only 1 item because previous fitler
            bow_word_ids.update(w[0] for w in filtered)
697
698
699
700
701

    # iterate through the perturbed texts
    for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
        try:
            # untokenize unperturbed text
702
            if colorama:
Piero Molino's avatar
Piero Molino committed
703
704
                import colorama

705
                pert_gen_text = ""
706
                for word_id in pert_gen_tok_text.tolist()[0]:
707
                    if word_id in bow_word_ids:
708
709
                        pert_gen_text += "{}{}{}".format(
                            colorama.Fore.RED, tokenizer.decode([word_id]), colorama.Style.RESET_ALL
710
                        )
Piero Molino's avatar
Piero Molino committed
711
                    else:
712
                        pert_gen_text += tokenizer.decode([word_id])
Piero Molino's avatar
Piero Molino committed
713
            else:
714
                pert_gen_text = tokenizer.decode(pert_gen_tok_text.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
715

716
717
718
            print("= Perturbed generated text {} =".format(i + 1))
            print(pert_gen_text)
            print()
719
720
        except Exception as exc:
            print("Ignoring error while generating perturbed text:", exc)
Julien Chaumond's avatar
Julien Chaumond committed
721

722
        # keep the prefix, perturbed seq, original seq for each index
723
        generated_texts.append((tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text))
Julien Chaumond's avatar
Julien Chaumond committed
724

Piero Molino's avatar
Piero Molino committed
725
    return
Julien Chaumond's avatar
Julien Chaumond committed
726
727


728
if __name__ == "__main__":
729
730
731
732
733
734
735
736
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--pretrained_model",
        "-M",
        type=str,
        default="gpt2-medium",
        help="pretrained model name or path to local checkpoint",
    )
737
738
    parser.add_argument("--cond_text", type=str, default="The lake", help="Prefix texts to condition on")
    parser.add_argument("--uncond", action="store_true", help="Generate from end-of-text as prefix")
739
    parser.add_argument(
740
        "--num_samples", type=int, default=1, help="Number of samples to generate from the modified latents",
741
    )
742
743
744
745
746
747
    parser.add_argument(
        "--bag_of_words",
        "-B",
        type=str,
        default=None,
        help="Bags of words used for PPLM-BoW. "
748
749
        "Either a BOW id (see list in code) or a filepath. "
        "Multiple BoWs separated by ;",
750
751
752
753
754
755
756
757
758
    )
    parser.add_argument(
        "--discrim",
        "-D",
        type=str,
        default=None,
        choices=("clickbait", "sentiment", "toxicity", "generic"),
        help="Discriminator to use",
    )
759
    parser.add_argument("--discrim_weights", type=str, default=None, help="Weights for the generic discriminator")
760
    parser.add_argument(
761
762
763
764
        "--discrim_meta", type=str, default=None, help="Meta information for the generic discriminator"
    )
    parser.add_argument(
        "--class_label", type=int, default=-1, help="Class label used for the discriminator",
765
766
    )
    parser.add_argument("--length", type=int, default=100)
767
    parser.add_argument("--stepsize", type=float, default=0.02)
768
769
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
770
    parser.add_argument("--sample", action="store_true", help="Generate from end-of-text as prefix")
771
772
773
    parser.add_argument("--num_iterations", type=int, default=3)
    parser.add_argument("--grad_length", type=int, default=10000)
    parser.add_argument(
774
        "--window_length",
775
        type=int,
776
        default=0,
777
        help="Length of past which is being optimized; " "0 corresponds to infinite window length",
778
779
    )
    parser.add_argument(
780
        "--horizon_length", type=int, default=1, help="Length of future to optimize over",
781
    )
782
    parser.add_argument("--decay", action="store_true", help="whether to decay or not")
783
    parser.add_argument("--gamma", type=float, default=1.5)
784
785
786
787
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--no_cuda", action="store_true", help="no cuda")
788
    parser.add_argument("--colorama", action="store_true", help="colors keywords")
789
790
791
    parser.add_argument(
        "--repetition_penalty", type=float, default=1.0, help="Penalize repetition. More than 1.0 -> less repetition",
    )
792
793
794

    args = parser.parse_args()
    run_pplm_example(**vars(args))