callbacks_rag.py 4.32 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
import logging
import os
3
from pathlib import Path
Ola Piktus's avatar
Ola Piktus committed
4

5
6
7
8
9
10
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only

11
from utils_rag import save_json
12
13
14
15
16
17


def count_trainable_parameters(model):
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])
    return params
Ola Piktus's avatar
Ola Piktus committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


logger = logging.getLogger(__name__)


def get_checkpoint_callback(output_dir, metric):
    """Saves the best model by validation EM score."""
    if metric == "rouge2":
        exp = "{val_avg_rouge2:.4f}-{step_count}"
    elif metric == "bleu":
        exp = "{val_avg_bleu:.4f}-{step_count}"
    elif metric == "em":
        exp = "{val_avg_em:.4f}-{step_count}"
    else:
        raise NotImplementedError(
            f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this function."
        )

    checkpoint_callback = ModelCheckpoint(
        filepath=os.path.join(output_dir, exp),
        monitor=f"val_{metric}",
        mode="max",
        save_top_k=3,
41
        period=1,  # maybe save a checkpoint every time val is run, not just end of epoch.
Ola Piktus's avatar
Ola Piktus committed
42
43
    )
    return checkpoint_callback
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


def get_early_stopping_callback(metric, patience):
    return EarlyStopping(
        monitor=f"val_{metric}",  # does this need avg?
        mode="min" if "loss" in metric else "max",
        patience=patience,
        verbose=True,
    )


class Seq2SeqLoggingCallback(pl.Callback):
    def on_batch_end(self, trainer, pl_module):
        lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
        pl_module.logger.log_metrics(lrs)

    @rank_zero_only
    def _write_logs(
        self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True
    ) -> None:
        logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****")
        metrics = trainer.callback_metrics
        trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]})
        # Log results
        od = Path(pl_module.hparams.output_dir)
        if type_path == "test":
            results_file = od / "test_results.txt"
            generations_file = od / "test_generations.txt"
        else:
            # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
            # If people want this it will be easy enough to add back.
            results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt"
            generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt"
            results_file.parent.mkdir(exist_ok=True)
            generations_file.parent.mkdir(exist_ok=True)
        with open(results_file, "a+") as writer:
            for key in sorted(metrics):
                if key in ["log", "progress_bar", "preds"]:
                    continue
                val = metrics[key]
                if isinstance(val, torch.Tensor):
                    val = val.item()
                msg = f"{key}: {val:.6f}\n"
                writer.write(msg)

        if not save_generations:
            return

        if "preds" in metrics:
            content = "\n".join(metrics["preds"])
            generations_file.open("w+").write(content)

    @rank_zero_only
    def on_train_start(self, trainer, pl_module):
        try:
            npars = pl_module.model.model.num_parameters()
        except AttributeError:
            npars = pl_module.model.num_parameters()

        n_trainable_pars = count_trainable_parameters(pl_module)
        # mp stands for million parameters
        trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6})

    @rank_zero_only
    def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
        save_json(pl_module.metrics, pl_module.metrics_save_path)
        return self._write_logs(trainer, pl_module, "test")

    @rank_zero_only
    def on_validation_end(self, trainer: pl.Trainer, pl_module):
        save_json(pl_module.metrics, pl_module.metrics_save_path)
        # Uncommenting this will save val generations
        # return self._write_logs(trainer, pl_module, "valid")