test_processor_bark.py 4.55 KB
Newer Older
Yoach Lacombe's avatar
Yoach Lacombe committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import tempfile
import unittest

import numpy as np

from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow


@require_torch
class BarkProcessorTest(unittest.TestCase):
    def setUp(self):
29
        self.checkpoint = "suno/bark-small"
Yoach Lacombe's avatar
Yoach Lacombe committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        self.tmpdirname = tempfile.mkdtemp()
        self.voice_preset = "en_speaker_1"
        self.input_string = "This is a test string"
        self.speaker_embeddings_dict_path = "speaker_embeddings_path.json"
        self.speaker_embeddings_directory = "speaker_embeddings"

    def get_tokenizer(self, **kwargs):
        return AutoTokenizer.from_pretrained(self.checkpoint, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()

        processor = BarkProcessor(tokenizer=tokenizer)

        processor.save_pretrained(self.tmpdirname)
        processor = BarkProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())

    @slow
    def test_save_load_pretrained_additional_features(self):
        processor = BarkProcessor.from_pretrained(
            pretrained_processor_name_or_path=self.checkpoint,
            speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,
        )
        processor.save_pretrained(
            self.tmpdirname,
            speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,
            speaker_embeddings_directory=self.speaker_embeddings_directory,
        )

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")

        processor = BarkProcessor.from_pretrained(
            self.tmpdirname,
            self.speaker_embeddings_dict_path,
            bos_token="(BOS)",
            eos_token="(EOS)",
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())

    def test_speaker_embeddings(self):
        processor = BarkProcessor.from_pretrained(
            pretrained_processor_name_or_path=self.checkpoint,
            speaker_embeddings_dict_path=self.speaker_embeddings_dict_path,
        )

        seq_len = 35
        nb_codebooks_coarse = 2
        nb_codebooks_total = 8

        voice_preset = {
            "semantic_prompt": np.ones(seq_len),
            "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)),
            "fine_prompt": np.ones((nb_codebooks_total, seq_len)),
        }

        # test providing already loaded voice_preset
        inputs = processor(text=self.input_string, voice_preset=voice_preset)

        processed_voice_preset = inputs["history_prompt"]
        for key in voice_preset:
            self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist())

        # test loading voice preset from npz file
        tmpfilename = os.path.join(self.tmpdirname, "file.npz")
        np.savez(tmpfilename, **voice_preset)
        inputs = processor(text=self.input_string, voice_preset=tmpfilename)
        processed_voice_preset = inputs["history_prompt"]

        for key in voice_preset:
            self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist())

        # test loading voice preset from the hub
        inputs = processor(text=self.input_string, voice_preset=self.voice_preset)

    def test_tokenizer(self):
        tokenizer = self.get_tokenizer()

        processor = BarkProcessor(tokenizer=tokenizer)

        encoded_processor = processor(text=self.input_string)

        encoded_tok = tokenizer(
            self.input_string,
            padding="max_length",
            max_length=256,
            add_special_tokens=False,
            return_attention_mask=True,
            return_token_type_ids=False,
        )

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key].squeeze().tolist())