test_tokenization_mbart50.py 9.21 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest

from transformers import SPIECE_UNDERLINE, BatchEncoding, MBart50Tokenizer, MBart50TokenizerFast, is_torch_available
from transformers.file_utils import is_sentencepiece_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch

from .test_tokenization_common import TokenizerTesterMixin


if is_sentencepiece_available():
    SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


if is_torch_available():
    from transformers.models.mbart.modeling_mbart import shift_tokens_right

EN_CODE = 250004
RO_CODE = 250020


@require_sentencepiece
@require_tokenizers
class MBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = MBart50Tokenizer
    rust_tokenizer_class = MBart50TokenizerFast
    test_rust_tokenizer = True

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            # fmt: off
            [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "茅", "."],
            # fmt: on
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            # fmt: off
            [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."],
            # fmt: on
        )


@require_torch
@require_sentencepiece
@require_tokenizers
class MBartOneToManyIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/mbart-large-50-one-to-many-mmt"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
        'Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.',
    ]
    expected_src_tokens = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: MBart50Tokenizer = MBart50Tokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
        )
        cls.pad_token_id = 1
        return cls

    def check_language_codes(self):
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 250038)

    def test_tokenizer_batch_encode_plus(self):
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
        generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_romanian)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_tokenizer_truncation(self):
        src_text = ["this is gunna be a long sentence " * 20]
        assert isinstance(src_text[0], str)
        desired_max_length = 10
        ids = self.tokenizer.prepare_seq2seq_batch(
            src_text,
            max_length=desired_max_length,
        ).input_ids[0]
        self.assertEqual(ids[0], EN_CODE)
        self.assertEqual(ids[-1], 2)
        self.assertEqual(len(ids), desired_max_length)

    def test_mask_token(self):
        self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250053, 250001])

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = MBart50Tokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)

    # prepare_seq2seq_batch tests below

    @require_torch
    def test_batch_fairseq_parity(self):
        batch: BatchEncoding = self.tokenizer.prepare_seq2seq_batch(
            self.src_text, tgt_texts=self.tgt_text, return_tensors="pt"
        )
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)

        for k in batch:
            batch[k] = batch[k].tolist()
        # batch = {k: v.tolist() for k,v in batch.items()}
        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        # batch.decoder_inputs_ids[0][0] ==
        assert batch.input_ids[1][0] == EN_CODE
        assert batch.input_ids[1][-1] == 2
        assert batch.labels[1][0] == RO_CODE
        assert batch.labels[1][-1] == 2
        assert batch.decoder_input_ids[1][:2] == [2, RO_CODE]

    @require_torch
    def test_tokenizer_prepare_seq2seq_batch(self):
        batch = self.tokenizer.prepare_seq2seq_batch(
            self.src_text, tgt_texts=self.tgt_text, max_length=len(self.expected_src_tokens), return_tensors="pt"
        )
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 14), batch.input_ids.shape)
        self.assertEqual((2, 14), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(self.expected_src_tokens, result)
        self.assertEqual(2, batch.decoder_input_ids[0, 0])  # decoder_start_token_id
        # Test that special tokens are reset
        self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
        self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])

    def test_seq2seq_max_target_length(self):
        batch = self.tokenizer.prepare_seq2seq_batch(
            self.src_text, tgt_texts=self.tgt_text, max_length=3, max_target_length=10, return_tensors="pt"
        )
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 10)
        # max_target_length will default to max_length if not specified
        batch = self.tokenizer.prepare_seq2seq_batch(
            self.src_text, tgt_texts=self.tgt_text, max_length=3, return_tensors="pt"
        )
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 3)