run_translation.py 23.1 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

import numpy as np
from datasets import load_dataset, load_metric

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    MBartTokenizer,
38
    MBartTokenizerFast,
39
40
41
42
43
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    default_data_collator,
    set_seed,
)
44
from transformers.trainer_utils import get_last_checkpoint, is_main_process
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

92
93
94
    source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
    target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})

95
96
97
98
99
100
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
101
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
102
103
    validation_file: Optional[str] = field(
        default=None,
104
        metadata={
105
106
            "help": "An optional input evaluation data file to evaluate the metrics (sacreblue) on "
            "a jsonlines file."
107
108
109
110
111
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
112
            "help": "An optional input test data file to evaluate the metrics (sacreblue) on " "a jsonlines file."
113
        },
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
137
        default=None,
138
139
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
140
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_val_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
181
182
183
184
185
186
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
187
188
189
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
190
191
192
193

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
194
195
196
197
198
199
200
201
202
        elif self.source_lang is None or self.target_lang is None:
            raise ValueError("Need to specify the source language and the target language.")

        if self.train_file is not None:
            extension = self.train_file.split(".")[-1]
            assert extension == "json", "`train_file` should be a json file."
        if self.validation_file is not None:
            extension = self.validation_file.split(".")[-1]
            assert extension == "json", "`validation_file` should be a json file."
203
204
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

220
221
222
223
224
225
226
227
228
229
230
231
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `"
        )

232
233
234
235
236
237
238
239
240
241
242
243
244
245
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
246
247
248
249
250

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
251
        handlers=[logging.StreamHandler(sys.stdout)],
252
    )
253
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

268
    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
288
289
290
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Set decoder_start_token_id
323
324
325
326
327
328
329
330
331
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        assert (
            data_args.target_lang is not None and data_args.source_lang is not None
        ), "mBart requires --target_lang and --source_lang"
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)

332
333
334
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

335
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
336

337
338
339
340
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = datasets["train"].column_names
341
    elif training_args.do_eval:
342
        column_names = datasets["validation"].column_names
343
344
345
346
347
    elif training_args.do_predict:
        column_names = datasets["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
348
349
350

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
351
    if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
352
353
354
355
356
        if data_args.source_lang is not None:
            tokenizer.src_lang = data_args.source_lang
        if data_args.target_lang is not None:
            tokenizer.tgt_lang = data_args.target_lang

357
358
359
    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]
360
361
362
363
364

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

365
366
367
368
369
370
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
        logger.warn(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

371
    def preprocess_function(examples):
372
373
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
374
        inputs = [prefix + inp for inp in inputs]
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        train_dataset = datasets["train"]
393
394
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
395
396
397
398
399
400
401
402
403
404
405
406
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
407
408
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
409
410
411
412
413
414
415
416
417
418
419
        eval_dataset = datasets["validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

420
421
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
422
423
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
424
425
426
427
428
429
430
431
432
433
434
        test_dataset = datasets["test"]
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

435
436
437
438
439
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
440
441
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
442
            model=model,
443
444
445
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )
446
447

    # Metric
448
    metric = load_metric("sacrebleu")
449

450
451
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
452
        labels = [[label.strip()] for label in labels]
453
454
455

        return preds, labels

456
457
458
459
460
461
462
463
464
465
466
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
467
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
468

469
470
        result = metric.compute(predictions=decoded_preds, references=decoded_labels)
        result = {"bleu": result["score"]}
471
472
473

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
474
        result = {k: round(v, 4) for k, v in result.items()}
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
490
        if last_checkpoint is not None:
491
            checkpoint = last_checkpoint
492
        elif os.path.isdir(model_args.model_name_or_path):
493
            checkpoint = model_args.model_name_or_path
494
        else:
495
496
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
497
498
        trainer.save_model()  # Saves the tokenizer too for easy upload

499
500
501
502
503
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
504

505
506
507
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
508
509

    # Evaluation
510
    results = {}
511
512
513
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

514
        metrics = trainer.evaluate(
515
            max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
516
517
        )
        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
518
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
519

520
521
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
522

523
524
525
526
527
528
529
530
531
    if training_args.do_predict:
        logger.info("*** Test ***")

        test_results = trainer.predict(
            test_dataset,
            metric_key_prefix="test",
            max_length=data_args.val_max_target_length,
            num_beams=data_args.num_beams,
        )
532
533
534
        metrics = test_results.metrics
        max_test_samples = data_args.max_test_samples if data_args.max_test_samples is not None else len(test_dataset)
        metrics["test_samples"] = min(max_test_samples, len(test_dataset))
535

536
537
        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)
538

539
        if trainer.is_world_process_zero():
540
541
542
543
544
            if training_args.predict_with_generate:
                test_preds = tokenizer.batch_decode(
                    test_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
                test_preds = [pred.strip() for pred in test_preds]
545
                output_test_preds_file = os.path.join(training_args.output_dir, "test_generations.txt")
546
547
548
                with open(output_test_preds_file, "w") as writer:
                    writer.write("\n".join(test_preds))

549
550
    return results

551
552
553
554
555
556
557
558

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()