"tests/models/wav2vec2/test_modeling_flax_wav2vec2.py" did not exist on "3c4fbc616f74120c3900d07c772b7d2d9c7a53dd"
test_image_processing_flava.py 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
25
26
27
28
29
30


if is_torch_available():
    import torch

if is_vision_available():
amyeroberts's avatar
amyeroberts committed
31
    import PIL
32

33
    from transformers import FlavaImageProcessor
34
    from transformers.image_utils import PILImageResampling
amyeroberts's avatar
amyeroberts committed
35
    from transformers.models.flava.image_processing_flava import (
36
37
38
39
40
41
42
43
44
        FLAVA_CODEBOOK_MEAN,
        FLAVA_CODEBOOK_STD,
        FLAVA_IMAGE_MEAN,
        FLAVA_IMAGE_STD,
    )
else:
    FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None


45
class FlavaImageProcessingTester(unittest.TestCase):
46
47
48
49
50
51
52
53
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
54
        size=None,
55
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
56
        crop_size=None,
57
        resample=None,
amyeroberts's avatar
amyeroberts committed
58
59
        do_rescale=True,
        rescale_factor=1 / 255,
60
61
62
63
64
65
66
67
68
69
        do_normalize=True,
        image_mean=FLAVA_IMAGE_MEAN,
        image_std=FLAVA_IMAGE_STD,
        input_size_patches=14,
        total_mask_patches=75,
        mask_group_max_patches=None,
        mask_group_min_patches=16,
        mask_group_min_aspect_ratio=0.3,
        mask_group_max_aspect_ratio=None,
        codebook_do_resize=True,
amyeroberts's avatar
amyeroberts committed
70
        codebook_size=None,
71
72
        codebook_resample=None,
        codebook_do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
73
        codebook_crop_size=None,
74
75
76
77
78
        codebook_do_map_pixels=True,
        codebook_do_normalize=True,
        codebook_image_mean=FLAVA_CODEBOOK_MEAN,
        codebook_image_std=FLAVA_CODEBOOK_STD,
    ):
amyeroberts's avatar
amyeroberts committed
79
80
81
82
83
        size = size if size is not None else {"height": 224, "width": 224}
        crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
        codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
        codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}

84
85
86
87
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.do_resize = do_resize
amyeroberts's avatar
amyeroberts committed
88
89
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
90
91
92
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.size = size
93
        self.resample = resample if resample is not None else PILImageResampling.BICUBIC
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size

        self.input_size_patches = input_size_patches
        self.total_mask_patches = total_mask_patches
        self.mask_group_max_patches = mask_group_max_patches
        self.mask_group_min_patches = mask_group_min_patches
        self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
        self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio

        self.codebook_do_resize = codebook_do_resize
        self.codebook_size = codebook_size
109
        self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
110
111
112
113
114
115
116
        self.codebook_do_center_crop = codebook_do_center_crop
        self.codebook_crop_size = codebook_crop_size
        self.codebook_do_map_pixels = codebook_do_map_pixels
        self.codebook_do_normalize = codebook_do_normalize
        self.codebook_image_mean = codebook_image_mean
        self.codebook_image_std = codebook_image_std

117
    def prepare_image_processor_dict(self):
118
119
120
121
122
123
124
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "resample": self.resample,
amyeroberts's avatar
amyeroberts committed
125
126
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "input_size_patches": self.input_size_patches,
            "total_mask_patches": self.total_mask_patches,
            "mask_group_max_patches": self.mask_group_max_patches,
            "mask_group_min_patches": self.mask_group_min_patches,
            "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
            "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
            "codebook_do_resize": self.codebook_do_resize,
            "codebook_size": self.codebook_size,
            "codebook_resample": self.codebook_resample,
            "codebook_do_center_crop": self.codebook_do_center_crop,
            "codebook_crop_size": self.codebook_crop_size,
            "codebook_do_map_pixels": self.codebook_do_map_pixels,
            "codebook_do_normalize": self.codebook_do_normalize,
            "codebook_image_mean": self.codebook_image_mean,
            "codebook_image_std": self.codebook_image_std,
        }

    def get_expected_image_size(self):
amyeroberts's avatar
amyeroberts committed
147
        return (self.size["height"], self.size["width"])
148
149
150
151
152
153
154
155
156

    def get_expected_mask_size(self):
        return (
            (self.input_size_patches, self.input_size_patches)
            if not isinstance(self.input_size_patches, tuple)
            else self.input_size_patches
        )

    def get_expected_codebook_image_size(self):
amyeroberts's avatar
amyeroberts committed
157
        return (self.codebook_size["height"], self.codebook_size["width"])
158
159
160
161


@require_torch
@require_vision
162
163
class FlavaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = FlavaImageProcessor if is_vision_available() else None
164
165
166
    maxDiff = None

    def setUp(self):
167
        self.image_processor_tester = FlavaImageProcessingTester(self)
168
169

    @property
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "crop_size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "masking_generator"))
        self.assertTrue(hasattr(image_processing, "codebook_do_resize"))
        self.assertTrue(hasattr(image_processing, "codebook_size"))
        self.assertTrue(hasattr(image_processing, "codebook_resample"))
        self.assertTrue(hasattr(image_processing, "codebook_do_center_crop"))
        self.assertTrue(hasattr(image_processing, "codebook_crop_size"))
        self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels"))
        self.assertTrue(hasattr(image_processing, "codebook_do_normalize"))
        self.assertTrue(hasattr(image_processing, "codebook_image_mean"))
        self.assertTrue(hasattr(image_processing, "codebook_image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112})

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66
204
        )
205
206
207
208
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
        self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})
209

210
211
212
213
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
214
215
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
216
        # create random PIL images
217
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
218
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
219
            self.assertIsInstance(image, PIL.Image.Image)
220
221

        # Test not batched input
222
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
223
224
225
226

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

227
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
228
229
230

        self.assertEqual(
            encoded_images.pixel_values.shape,
231
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
232
233
234
        )

        # Test batched
235
236
        encoded_images = image_processing(image_inputs, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
237
238
239
240
241
242
243

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
244
245
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
246
247
248
249
250
251
                expected_height,
                expected_width,
            ),
        )

    def _test_call_framework(self, instance_class, prepare_kwargs):
252
253
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
254
        # create random tensors
255
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, **prepare_kwargs)
256
257
258
259
        for image in image_inputs:
            self.assertIsInstance(image, instance_class)

        # Test not batched input
260
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
261

262
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
263
264
        self.assertEqual(
            encoded_images.pixel_values.shape,
265
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
266
267
        )

268
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
269

270
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
271
272
273
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
274
275
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
276
277
278
279
280
                expected_height,
                expected_width,
            ),
        )

281
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
282
283
284
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
285
                self.image_processor_tester.batch_size,
286
287
288
289
290
291
                expected_height,
                expected_width,
            ),
        )

        # Test batched
292
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
293

294
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
295
296
297
        self.assertEqual(
            encoded_images.shape,
            (
298
299
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
300
301
302
303
304
305
                expected_height,
                expected_width,
            ),
        )

        # Test masking
306
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
307

308
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
309
310
311
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
312
313
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
314
315
316
317
318
                expected_height,
                expected_width,
            ),
        )

319
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
320
321
322
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
323
                self.image_processor_tester.batch_size,
324
325
326
327
328
329
330
331
332
333
334
335
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})

    def test_call_pytorch(self):
        self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})

    def test_masking(self):
336
        # Initialize image_processing
337
        random.seed(1234)
338
339
        image_processing = self.image_processing_class(**self.image_processor_dict)
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
340
341

        # Test not batched input
342
        encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
343
344
345
        self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)

    def test_codebook_pixels(self):
346
347
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
348
        # create random PIL images
349
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
350
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
351
            self.assertIsInstance(image, PIL.Image.Image)
352
353

        # Test not batched input
354
355
        encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
356
357
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
358
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
359
360
361
        )

        # Test batched
362
363
        encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
364
365
366
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (
367
368
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
369
370
371
372
                expected_height,
                expected_width,
            ),
        )