test_modeling_deit.py 15.7 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DeiT model. """


import inspect
import unittest
20
import warnings
NielsRogge's avatar
NielsRogge committed
21

22
from transformers import DeiTConfig
23
from transformers.models.auto import get_values
24
25
26
27
28
29
30
31
from transformers.testing_utils import (
    require_accelerate,
    require_torch,
    require_torch_gpu,
    require_vision,
    slow,
    torch_device,
)
32
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
33

Yih-Dar's avatar
Yih-Dar committed
34
35
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
NielsRogge's avatar
NielsRogge committed
36
37
38
39


if is_torch_available():
    import torch
40
    from torch import nn
NielsRogge's avatar
NielsRogge committed
41
42

    from transformers import (
43
44
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
45
46
47
        MODEL_MAPPING,
        DeiTForImageClassification,
        DeiTForImageClassificationWithTeacher,
NielsRogge's avatar
NielsRogge committed
48
        DeiTForMaskedImageModeling,
NielsRogge's avatar
NielsRogge committed
49
50
        DeiTModel,
    )
51
    from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
NielsRogge's avatar
NielsRogge committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


if is_vision_available():
    from PIL import Image

    from transformers import DeiTFeatureExtractor


class DeiTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
NielsRogge's avatar
NielsRogge committed
81
        encoder_stride=2,
NielsRogge's avatar
NielsRogge committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
NielsRogge's avatar
NielsRogge committed
100
        self.encoder_stride = encoder_stride
NielsRogge's avatar
NielsRogge committed
101

NielsRogge's avatar
NielsRogge committed
102
        # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
103
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
104
        self.seq_length = num_patches + 2
105

NielsRogge's avatar
NielsRogge committed
106
107
108
109
110
111
112
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

113
114
115
116
117
118
        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DeiTConfig(
NielsRogge's avatar
NielsRogge committed
119
120
121
122
123
124
125
126
127
128
129
130
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
131
            encoder_stride=self.encoder_stride,
NielsRogge's avatar
NielsRogge committed
132
133
134
135
136
137
138
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DeiTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
139
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
140

NielsRogge's avatar
NielsRogge committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = DeiTForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
        )

        # test greyscale images
        config.num_channels = 1
        model = DeiTForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size))

NielsRogge's avatar
NielsRogge committed
160
161
162
163
164
165
166
167
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = DeiTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
168
169
170
171
172
173
174
175
176
177
        # test greyscale images
        config.num_channels = 1
        model = DeiTForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class DeiTModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            DeiTModel,
            DeiTForImageClassification,
            DeiTForImageClassificationWithTeacher,
NielsRogge's avatar
NielsRogge committed
201
            DeiTForMaskedImageModeling,
NielsRogge's avatar
NielsRogge committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        )
        if is_torch_available()
        else ()
    )

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DeiTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
218
    @unittest.skip(reason="DeiT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
219
220
221
222
223
224
225
226
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
227
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
NielsRogge's avatar
NielsRogge committed
228
            x = model.get_output_embeddings()
229
            self.assertTrue(x is None or isinstance(x, nn.Linear))
NielsRogge's avatar
NielsRogge committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
247
248
249
250
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
251
252
253
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
NielsRogge's avatar
NielsRogge committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

    # special case for DeiTForImageClassificationWithTeacher model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                del inputs_dict["labels"]

        return inputs_dict

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # DeiTForImageClassificationWithTeacher supports inference-only
            if (
275
                model_class in get_values(MODEL_MAPPING)
NielsRogge's avatar
NielsRogge committed
276
277
278
279
280
281
282
283
284
285
                or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
            ):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
                continue
            # DeiTForImageClassificationWithTeacher supports inference-only
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                continue
            model = model_class(config)
301
            model.gradient_checkpointing_enable()
302
303
304
305
306
307
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if (
                model_class
                not in [
                    *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                    *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
                ]
                or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
            ):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )

                    loss.backward()

NielsRogge's avatar
NielsRogge committed
358
359
360
361
362
363
364
365
366
    @slow
    def test_model_from_pretrained(self):
        for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DeiTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
NielsRogge's avatar
NielsRogge committed
367
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
NielsRogge's avatar
NielsRogge committed
368
369
370
    return image


371
@require_torch
NielsRogge's avatar
NielsRogge committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
@require_vision
class DeiTModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            DeiTFeatureExtractor.from_pretrained("facebook/deit-base-distilled-patch16-224")
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to(
            torch_device
        )

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
393
394
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
395
396
397
398
399
400
401
402

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

    @slow
    @require_accelerate
    @require_torch_gpu
    def test_inference_fp16(self):
        r"""
        A small test to make sure that inference work in half precision without any problem.
        """
        model = DeiTModel.from_pretrained(
            "facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto"
        )
        feature_extractor = self.default_feature_extractor

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass to make sure inference works in fp16
        with torch.no_grad():
            _ = model(pixel_values)