test_image_processing_clip.py 11.6 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
23

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin
Suraj Patil's avatar
Suraj Patil committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import CLIPImageProcessor
Suraj Patil's avatar
Suraj Patil committed
34
35


36
class CLIPImageProcessingTester(unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
Suraj Patil's avatar
Suraj Patil committed
47
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
48
        crop_size=None,
Suraj Patil's avatar
Suraj Patil committed
49
50
51
        do_normalize=True,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
        image_std=[0.26862954, 0.26130258, 0.27577711],
52
        do_convert_rgb=True,
Suraj Patil's avatar
Suraj Patil committed
53
    ):
amyeroberts's avatar
amyeroberts committed
54
55
        size = size if size is not None else {"shortest_edge": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
Suraj Patil's avatar
Suraj Patil committed
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
69
        self.do_convert_rgb = do_convert_rgb
Suraj Patil's avatar
Suraj Patil committed
70

71
    def prepare_image_processor_dict(self):
Suraj Patil's avatar
Suraj Patil committed
72
73
74
75
76
77
78
79
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
80
            "do_convert_rgb": self.do_convert_rgb,
Suraj Patil's avatar
Suraj Patil committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        }

    def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        if equal_resolution:
            image_inputs = []
            for i in range(self.batch_size):
                image_inputs.append(
                    np.random.randint(
                        255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
                    )
                )
        else:
            image_inputs = []
            for i in range(self.batch_size):
                width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
                image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        if torchify:
            image_inputs = [torch.from_numpy(x) for x in image_inputs]

        return image_inputs


@require_torch
@require_vision
116
117
class CLIPImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = CLIPImageProcessor if is_vision_available() else None
Suraj Patil's avatar
Suraj Patil committed
118
119

    def setUp(self):
120
        self.image_processor_tester = CLIPImageProcessingTester(self)
Suraj Patil's avatar
Suraj Patil committed
121
122

    @property
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_convert_rgb"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 20})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
145

Suraj Patil's avatar
Suraj Patil committed
146
147
148
149
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
150
151
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
Suraj Patil's avatar
Suraj Patil committed
152
        # create random PIL images
153
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
Suraj Patil's avatar
Suraj Patil committed
154
155
156
157
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
158
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
159
160
161
162
        self.assertEqual(
            encoded_images.shape,
            (
                1,
163
164
165
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
166
167
168
169
            ),
        )

        # Test batched
170
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
171
172
173
        self.assertEqual(
            encoded_images.shape,
            (
174
175
176
177
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
178
179
180
181
            ),
        )

    def test_call_numpy(self):
182
183
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
Suraj Patil's avatar
Suraj Patil committed
184
        # create random numpy tensors
185
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
Suraj Patil's avatar
Suraj Patil committed
186
187
188
189
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
190
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
191
192
193
194
        self.assertEqual(
            encoded_images.shape,
            (
                1,
195
196
197
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
198
199
200
201
            ),
        )

        # Test batched
202
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
203
204
205
        self.assertEqual(
            encoded_images.shape,
            (
206
207
208
209
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
210
211
212
213
            ),
        )

    def test_call_pytorch(self):
214
215
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
Suraj Patil's avatar
Suraj Patil committed
216
        # create random PyTorch tensors
217
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
Suraj Patil's avatar
Suraj Patil committed
218
219
220
221
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
222
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
223
224
225
226
        self.assertEqual(
            encoded_images.shape,
            (
                1,
227
228
229
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
230
231
232
233
            ),
        )

        # Test batched
234
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
235
236
237
        self.assertEqual(
            encoded_images.shape,
            (
238
239
240
241
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
242
243
            ),
        )
244
245
246
247


@require_torch
@require_vision
248
249
class CLIPImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = CLIPImageProcessor if is_vision_available() else None
250
251

    def setUp(self):
252
        self.image_processor_tester = CLIPImageProcessingTester(self, num_channels=4)
253
254
255
        self.expected_encoded_image_num_channels = 3

    @property
256
257
258
259
260
261
262
263
264
265
266
267
268
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
269
270
271
272
273

    def test_batch_feature(self):
        pass

    def test_call_pil_four_channels(self):
274
275
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
276
        # create random PIL images
277
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
278
279
280
281
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
282
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
283
284
285
286
287
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.expected_encoded_image_num_channels,
288
289
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
290
291
292
293
            ),
        )

        # Test batched
294
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
295
296
297
        self.assertEqual(
            encoded_images.shape,
            (
298
                self.image_processor_tester.batch_size,
299
                self.expected_encoded_image_num_channels,
300
301
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
302
303
            ),
        )