test_modeling_poolformer.py 12.7 KB
Newer Older
Tanay Mehta's avatar
Tanay Mehta committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch PoolFormer model. """


import inspect
import unittest
from typing import Dict, List, Tuple

from transformers import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device

26
27
from ..test_configuration_common import ConfigTester
from ..test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
Tanay Mehta's avatar
Tanay Mehta committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331


if is_torch_available():
    import torch

    from transformers import MODEL_MAPPING, PoolFormerConfig, PoolFormerForImageClassification, PoolFormerModel
    from transformers.models.poolformer.modeling_poolformer import POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import PoolFormerFeatureExtractor


class PoolFormerConfigTester(ConfigTester):
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
        self.parent.assertTrue(hasattr(config, "hidden_sizes"))
        self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))


class PoolFormerModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=64,
        num_channels=3,
        num_encoder_blocks=4,
        depths=[2, 2, 2, 2],
        sr_ratios=[8, 4, 2, 1],
        hidden_sizes=[16, 32, 64, 128],
        downsampling_rates=[1, 4, 8, 16],
        is_training=False,
        use_labels=True,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.num_encoder_blocks = num_encoder_blocks
        self.sr_ratios = sr_ratios
        self.depths = depths
        self.hidden_sizes = hidden_sizes
        self.downsampling_rates = downsampling_rates
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = PoolFormerConfig(
            image_size=self.image_size,
            num_channels=self.num_channels,
            num_encoder_blocks=self.num_encoder_blocks,
            depths=self.depths,
            hidden_sizes=self.hidden_sizes,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            initializer_range=self.initializer_range,
        )

        return config, pixel_values, labels

    def create_and_check_model(self, config, pixel_values, labels):
        model = PoolFormerModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        expected_height = expected_width = self.image_size // 32.0
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class PoolFormerModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (PoolFormerModel, PoolFormerForImageClassification) if is_torch_available() else ()

    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = PoolFormerModelTester(self)
        self.config_tester = PoolFormerConfigTester(self, config_class=PoolFormerConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip("PoolFormer does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("PoolFormer does not have get_input_embeddings method and get_output_embeddings methods")
    def test_model_common_attributes(self):
        pass

    def test_retain_grad_hidden_states_attentions(self):
        # Since poolformer doesn't use Attention
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        output = outputs[0]

        hidden_states = outputs.hidden_states[0]

        hidden_states.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)

    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    @unittest.skip("PoolFormer does not have attention")
    def test_attention_outputs(self):
        pass

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = self.model_tester.num_encoder_blocks
            self.assertEqual(len(hidden_states), expected_num_layers)

            # verify the first hidden states (first block)
            self.assertListEqual(
                list(hidden_states[0].shape[-3:]),
                [
                    self.model_tester.hidden_sizes[0],
                    self.model_tester.image_size // 4,
                    self.model_tester.image_size // 4,
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(MODEL_MAPPING):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @slow
    def test_model_from_pretrained(self):
        for model_name in POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = PoolFormerModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
class PoolFormerModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_image_classification_head(self):
        feature_extractor = PoolFormerFeatureExtractor()
        model = PoolFormerForImageClassification.from_pretrained("sail/poolformer_s12").to(torch_device)

        inputs = feature_extractor(images=prepare_img(), return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-0.6113, 0.1685, -0.0492]).to(torch_device)
        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))