test_image_processing_flava.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
25
26
27
28
29
30


if is_torch_available():
    import torch

if is_vision_available():
amyeroberts's avatar
amyeroberts committed
31
    import PIL
32

33
    from transformers import FlavaImageProcessor
34
    from transformers.image_utils import PILImageResampling
amyeroberts's avatar
amyeroberts committed
35
    from transformers.models.flava.image_processing_flava import (
36
37
38
39
40
41
42
43
44
        FLAVA_CODEBOOK_MEAN,
        FLAVA_CODEBOOK_STD,
        FLAVA_IMAGE_MEAN,
        FLAVA_IMAGE_STD,
    )
else:
    FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None


45
class FlavaImageProcessingTester(unittest.TestCase):
46
47
48
49
50
51
52
53
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
54
        size=None,
55
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
56
        crop_size=None,
57
        resample=None,
amyeroberts's avatar
amyeroberts committed
58
59
        do_rescale=True,
        rescale_factor=1 / 255,
60
61
62
63
64
65
66
67
68
69
        do_normalize=True,
        image_mean=FLAVA_IMAGE_MEAN,
        image_std=FLAVA_IMAGE_STD,
        input_size_patches=14,
        total_mask_patches=75,
        mask_group_max_patches=None,
        mask_group_min_patches=16,
        mask_group_min_aspect_ratio=0.3,
        mask_group_max_aspect_ratio=None,
        codebook_do_resize=True,
amyeroberts's avatar
amyeroberts committed
70
        codebook_size=None,
71
72
        codebook_resample=None,
        codebook_do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
73
        codebook_crop_size=None,
74
75
76
77
78
        codebook_do_map_pixels=True,
        codebook_do_normalize=True,
        codebook_image_mean=FLAVA_CODEBOOK_MEAN,
        codebook_image_std=FLAVA_CODEBOOK_STD,
    ):
amyeroberts's avatar
amyeroberts committed
79
80
81
82
83
        size = size if size is not None else {"height": 224, "width": 224}
        crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
        codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
        codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}

84
85
86
87
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.do_resize = do_resize
amyeroberts's avatar
amyeroberts committed
88
89
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
90
91
92
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.size = size
93
        self.resample = resample if resample is not None else PILImageResampling.BICUBIC
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size

        self.input_size_patches = input_size_patches
        self.total_mask_patches = total_mask_patches
        self.mask_group_max_patches = mask_group_max_patches
        self.mask_group_min_patches = mask_group_min_patches
        self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
        self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio

        self.codebook_do_resize = codebook_do_resize
        self.codebook_size = codebook_size
109
        self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
110
111
112
113
114
115
116
        self.codebook_do_center_crop = codebook_do_center_crop
        self.codebook_crop_size = codebook_crop_size
        self.codebook_do_map_pixels = codebook_do_map_pixels
        self.codebook_do_normalize = codebook_do_normalize
        self.codebook_image_mean = codebook_image_mean
        self.codebook_image_std = codebook_image_std

117
    def prepare_image_processor_dict(self):
118
119
120
121
122
123
124
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "resample": self.resample,
amyeroberts's avatar
amyeroberts committed
125
126
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "input_size_patches": self.input_size_patches,
            "total_mask_patches": self.total_mask_patches,
            "mask_group_max_patches": self.mask_group_max_patches,
            "mask_group_min_patches": self.mask_group_min_patches,
            "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
            "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
            "codebook_do_resize": self.codebook_do_resize,
            "codebook_size": self.codebook_size,
            "codebook_resample": self.codebook_resample,
            "codebook_do_center_crop": self.codebook_do_center_crop,
            "codebook_crop_size": self.codebook_crop_size,
            "codebook_do_map_pixels": self.codebook_do_map_pixels,
            "codebook_do_normalize": self.codebook_do_normalize,
            "codebook_image_mean": self.codebook_image_mean,
            "codebook_image_std": self.codebook_image_std,
        }

    def get_expected_image_size(self):
amyeroberts's avatar
amyeroberts committed
147
        return (self.size["height"], self.size["width"])
148
149
150
151
152
153
154
155
156

    def get_expected_mask_size(self):
        return (
            (self.input_size_patches, self.input_size_patches)
            if not isinstance(self.input_size_patches, tuple)
            else self.input_size_patches
        )

    def get_expected_codebook_image_size(self):
amyeroberts's avatar
amyeroberts committed
157
        return (self.codebook_size["height"], self.codebook_size["width"])
158

159
160
161
162
163
164
165
166
167
168
169
    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

170
171
172

@require_torch
@require_vision
173
class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
174
    image_processing_class = FlavaImageProcessor if is_vision_available() else None
175
176
177
    maxDiff = None

    def setUp(self):
178
        self.image_processor_tester = FlavaImageProcessingTester(self)
179
180

    @property
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "crop_size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "masking_generator"))
        self.assertTrue(hasattr(image_processing, "codebook_do_resize"))
        self.assertTrue(hasattr(image_processing, "codebook_size"))
        self.assertTrue(hasattr(image_processing, "codebook_resample"))
        self.assertTrue(hasattr(image_processing, "codebook_do_center_crop"))
        self.assertTrue(hasattr(image_processing, "codebook_crop_size"))
        self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels"))
        self.assertTrue(hasattr(image_processing, "codebook_do_normalize"))
        self.assertTrue(hasattr(image_processing, "codebook_image_mean"))
        self.assertTrue(hasattr(image_processing, "codebook_image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112})

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66
215
        )
216
217
218
219
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
        self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})
220

221
    def test_call_pil(self):
222
223
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
224
        # create random PIL images
225
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
226
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
227
            self.assertIsInstance(image, PIL.Image.Image)
228
229

        # Test not batched input
230
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
231
232
233
234

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

235
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
236
237
238

        self.assertEqual(
            encoded_images.pixel_values.shape,
239
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
240
241
242
        )

        # Test batched
243
244
        encoded_images = image_processing(image_inputs, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
245
246
247
248
249
250
251

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
252
253
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
254
255
256
257
258
259
                expected_height,
                expected_width,
            ),
        )

    def _test_call_framework(self, instance_class, prepare_kwargs):
260
261
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
262
        # create random tensors
263
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs)
264
265
266
267
        for image in image_inputs:
            self.assertIsInstance(image, instance_class)

        # Test not batched input
268
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
269

270
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
271
272
        self.assertEqual(
            encoded_images.pixel_values.shape,
273
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
274
275
        )

276
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
277

278
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
279
280
281
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
282
283
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
284
285
286
287
288
                expected_height,
                expected_width,
            ),
        )

289
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
290
291
292
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
293
                self.image_processor_tester.batch_size,
294
295
296
297
298
299
                expected_height,
                expected_width,
            ),
        )

        # Test batched
300
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
301

302
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
303
304
305
        self.assertEqual(
            encoded_images.shape,
            (
306
307
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
308
309
310
311
312
313
                expected_height,
                expected_width,
            ),
        )

        # Test masking
314
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
315

316
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
317
318
319
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
320
321
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
322
323
324
325
326
                expected_height,
                expected_width,
            ),
        )

327
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
328
329
330
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
331
                self.image_processor_tester.batch_size,
332
333
334
335
336
337
338
339
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})

amyeroberts's avatar
amyeroberts committed
340
341
342
343
344
    def test_call_numpy_4_channels(self):
        self.image_processing_class.num_channels = 4
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
        self.image_processing_class.num_channels = 3

345
346
347
348
    def test_call_pytorch(self):
        self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})

    def test_masking(self):
349
        # Initialize image_processing
350
        random.seed(1234)
351
        image_processing = self.image_processing_class(**self.image_processor_dict)
352
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
353
354

        # Test not batched input
355
        encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
356
357
358
        self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)

    def test_codebook_pixels(self):
359
360
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
361
        # create random PIL images
362
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
363
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
364
            self.assertIsInstance(image, PIL.Image.Image)
365
366

        # Test not batched input
367
368
        encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
369
370
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
371
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
372
373
374
        )

        # Test batched
375
376
        encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
377
378
379
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (
380
381
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
382
383
384
385
                expected_height,
                expected_width,
            ),
        )