run_openai_gpt.py 11 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
    Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
    It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py

    This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm, trange

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)

from pytorch_pretrained_bert import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, OpenAIAdam

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

def load_rocstories_dataset(dataset_path):
    """ Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
    with open(dataset_path, encoding='utf_8') as f:
        f = csv.reader(f)
        output = []
        next(f) # skip the first line
        for line in tqdm(f):
            output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
    return output

def pre_process_datasets(encoded_datasets, max_len, start_token, delimiter_token, clf_token):
    """ Pre-process datasets containing lists of
        tuples(story, 1st continuation, 2nd continuation, label)
        
        In Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation:
        input_ids[batch, alternative, :] = [start_token] + story[:max_len] + [delimiter_token] + cont1[:max_len] + [clf_token]
    """
    tensor_datasets = []
    for dataset in encoded_datasets:
        n_batch = len(dataset)
        input_ids = np.zeros((n_batch, 2, max_len), dtype=np.int32)
        mc_token_mask = np.zeros((n_batch, 2, max_len), dtype=np.int32)
        lm_labels = np.full((n_batch, 2, max_len), -1, dtype=np.float32)
        mc_labels = np.zeros((n_batch,), dtype=np.float32)
        for i, (story, cont1, cont2, mc_label), in enumerate(dataset):
            with_cont1 = [start_token] + story[:max_len] + [delimiter_token] + cont1[:max_len] + [clf_token]
            with_cont2 = [start_token] + story[:max_len] + [delimiter_token] + cont2[:max_len] + [clf_token]
            input_ids[i, 0, :len(with_cont1)] = with_cont1
            input_ids[i, 1, :len(with_cont2)] = with_cont2
            mc_token_mask[i, 0, len(with_cont1) - 1] = 1
            lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
            lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
            mc_labels[i] = mc_label
        all_inputs = tuple(input_ids, mc_token_mask, lm_labels, mc_labels)
        tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
    return tensor_datasets

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name', type=str, default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument('--train_dataset', type=str, default='cloze_test_val__spring2016 - cloze_test_ALL_val.tsv')
    parser.add_argument('--eval_dataset', type=str, default='test_spring2016.tsv')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--max_grad_norm', type=float, default=1)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.5)
    parser.add_argument('--n_valid', type=int, default=374)
    args = parser.parse_args()
    print(args)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))

    # Load and encode the datasets
    logger.info("Encoding dataset...")
    train_dataset = load_rocstories_dataset(args.train_dataset)
    eval_datset = load_rocstories_dataset(args.eval_datset)
    datasets = (train_dataset, eval_datset)
    tokenized_datasets = tuple(list(list(tokenizer.tokenize(x) for x in instance)
                                         for instance in dataset) for dataset in datasets)
    encoded_datasets = tuple(list(list(tokenizer.convert_tokens_to_ids(x) for x in instance)
                                       for instance in dataset) for dataset in tokenized_datasets)

    # Compute the mex input length for the Transformer
    max_input_length = max(len(story) + max(len(cont1), len(cont2)) + 3  \
                           for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
    max_input_length = min(max_input_length, model.config.n_positions)  # Max size of input for the pre-trained model
    max_sub_part_length = max_input_length // 2 - 2

    # Prepare inputs tensors and dataloaders
    tensor_datasets = pre_process_datasets(encoded_datasets, max_sub_part_length, *special_tokens_ids)
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    num_train_optimization_steps = len(train_data) // args.train_batch_size
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=args.weight_decay,
                           t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps = 0
        tr_loss = 0
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_mask, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_mask, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]
                loss.backward()
                optimizer.step()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, state_dict=model_state_dict,
                                                      num_special_tokens=len(special_tokens))
    model.to(device)

    if args.do_eval:
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, mc_token_mask, lm_labels, mc_labels = batch
            with torch.no_grad():
                _, mc_loss = model(input_ids, mc_token_mask, lm_labels, mc_labels)
                _, mc_logits = model(input_ids, mc_token_mask)

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        train_loss = tr_loss/nb_tr_steps if args.do_train else None
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'train_loss': train_loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

if __name__ == '__main__':
    main()