test_mixed_int8.py 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
16
import importlib.metadata
17
import tempfile
18
19
import unittest

20
21
from packaging import version

22
from transformers import (
23
    AutoConfig,
24
25
26
27
28
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
29
    BitsAndBytesConfig,
30
31
    pipeline,
)
32
from transformers.testing_utils import (
33
    is_accelerate_available,
34
35
36
37
38
39
40
41
42
43
    is_torch_available,
    require_accelerate,
    require_bitsandbytes,
    require_torch,
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)


44
45
46
47
48
49
def get_some_linear_layer(model):
    if model.config.model_type == "gpt2":
        return model.transformer.h[0].mlp.c_fc
    return model.transformer.h[0].mlp.dense_4h_to_h


50
51
52
53
54
55
56
if is_accelerate_available():
    from accelerate import PartialState
    from accelerate.logging import get_logger

    logger = get_logger(__name__)
    _ = PartialState()

57
58
if is_torch_available():
    import torch
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    import torch.nn as nn

    class LoRALayer(nn.Module):
        """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only"""

        def __init__(self, module: nn.Module, rank: int):
            super().__init__()
            self.module = module
            self.adapter = nn.Sequential(
                nn.Linear(module.in_features, rank, bias=False),
                nn.Linear(rank, module.out_features, bias=False),
            )
            small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
            nn.init.normal_(self.adapter[0].weight, std=small_std)
            nn.init.zeros_(self.adapter[1].weight)
            self.adapter.to(module.weight.device)

        def forward(self, input, *args, **kwargs):
            return self.module(input, *args, **kwargs) + self.adapter(input)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110


@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class BaseMixedInt8Test(unittest.TestCase):
    # We keep the constants inside the init function and model loading inside setUp function

    # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
    # Therefore here we use only bloom-1b3 to test our module
    model_name = "bigscience/bloom-1b7"

    # Constant values
    EXPECTED_RELATIVE_DIFFERENCE = (
        1.540025  # This was obtained on a Quadro RTX 8000 so the number might slightly change
    )

    input_text = "Hello my name is"
    EXPECTED_OUTPUT = "Hello my name is John.\nI am a friend of the family.\n"
    MAX_NEW_TOKENS = 10

    def setUp(self):
        # Models and tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)


class MixedInt8Test(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

        # Models and tokenizer
111
112
113
        self.model_fp16 = AutoModelForCausalLM.from_pretrained(
            self.model_name, torch_dtype=torch.float16, device_map="auto"
        )
114
115
116
117
118
119
120
121
122
123
124
125
126
        self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.model_fp16
        del self.model_8bit

        gc.collect()
        torch.cuda.empty_cache()

127
128
    @unittest.skip("Un-skip once https://github.com/mosaicml/llm-foundry/issues/703 is resolved")
    def test_get_keys_to_not_convert_trust_remote_code(self):
129
        r"""
130
        Test the `get_keys_to_not_convert` function with `trust_remote_code` models.
131
132
133
        """
        from accelerate import init_empty_weights

134
        from transformers.integrations.bitsandbytes import get_keys_to_not_convert
135
136
137
138
139
140

        model_id = "mosaicml/mpt-7b"
        config = AutoConfig.from_pretrained(
            model_id, trust_remote_code=True, revision="72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7"
        )
        with init_empty_weights():
141
142
143
            model = AutoModelForCausalLM.from_config(
                config, trust_remote_code=True, code_revision="72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7"
            )
144
        self.assertEqual(get_keys_to_not_convert(model), ["transformer.wte"])
145
146
147
148
149
150
151
152
153
154
155

    def test_get_keys_to_not_convert(self):
        r"""
        Test the `get_keys_to_not_convert` function.
        """
        from accelerate import init_empty_weights

        from transformers import AutoModelForMaskedLM, Blip2ForConditionalGeneration, MptForCausalLM, OPTForCausalLM
        from transformers.integrations.bitsandbytes import get_keys_to_not_convert

        model_id = "mosaicml/mpt-7b"
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        config = AutoConfig.from_pretrained(model_id, revision="72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7")
        with init_empty_weights():
            model = MptForCausalLM(config)
        # The order of the keys does not matter, so we sort them before comparing, same for the other tests.
        self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "transformer.wte"].sort())

        model_id = "Salesforce/blip2-opt-2.7b"
        config = AutoConfig.from_pretrained(model_id, revision="1ef7f63a8f0a144c13fdca8103eb7b4691c74cec")
        with init_empty_weights():
            model = Blip2ForConditionalGeneration(config)
        self.assertEqual(
            get_keys_to_not_convert(model).sort(),
            ["language_model.lm_head", "language_model.model.decoder.embed_tokens"].sort(),
        )

        model_id = "facebook/opt-350m"
        config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
        with init_empty_weights():
            model = OPTForCausalLM(config)
        self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "model.decoder.embed_tokens"].sort())

        model_id = "roberta-large"
        config = AutoConfig.from_pretrained(model_id, revision="716877d372b884cad6d419d828bac6c85b3b18d9")
        with init_empty_weights():
            model = AutoModelForMaskedLM.from_config(config)
        self.assertEqual(
            get_keys_to_not_convert(model).sort(),
            ["'roberta.embeddings.word_embeddings', 'lm_head', 'lm_head.decoder"].sort(),
        )

186
187
188
189
190
191
192
193
194
195
196
197
198
    def test_quantization_config_json_serialization(self):
        r"""
        A simple test to check if the quantization config is correctly serialized and deserialized
        """
        config = self.model_8bit.config

        self.assertTrue(hasattr(config, "quantization_config"))

        _ = config.to_dict()
        _ = config.to_diff_dict()

        _ = config.to_json_string()

199
200
201
202
203
204
205
206
    def test_original_dtype(self):
        r"""
        A simple test to check if the model succesfully stores the original dtype
        """
        self.assertTrue(hasattr(self.model_8bit.config, "_pre_quantization_dtype"))
        self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
        self.assertTrue(self.model_8bit.config._pre_quantization_dtype == torch.float16)

207
208
209
210
211
212
213
214
215
216
217
    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        from bitsandbytes.nn import Int8Params

        mem_fp16 = self.model_fp16.get_memory_footprint()
        mem_8bit = self.model_8bit.get_memory_footprint()

        self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE)
218
        self.assertTrue(get_some_linear_layer(self.model_8bit).weight.__class__ == Int8Params)
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def test_linear_are_8bit(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        from transformers import T5PreTrainedModel

        self.model_fp16.get_memory_footprint()
        self.model_8bit.get_memory_footprint()

        for name, module in self.model_8bit.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules:
                    self.assertTrue(module.weight.dtype == torch.int8)

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    def test_llm_skip(self):
        r"""
        A simple test to check if `llm_int8_skip_modules` works as expected
        """
        import bitsandbytes as bnb

        quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["classifier"])
        seq_classification_model = AutoModelForSequenceClassification.from_pretrained(
            "roberta-large-mnli", quantization_config=quantization_config
        )
        self.assertTrue(seq_classification_model.roberta.encoder.layer[0].output.dense.weight.dtype == torch.int8)
        self.assertTrue(
            isinstance(seq_classification_model.roberta.encoder.layer[0].output.dense, bnb.nn.Linear8bitLt)
        )

        self.assertTrue(isinstance(seq_classification_model.classifier.dense, nn.Linear))
        self.assertTrue(seq_classification_model.classifier.dense.weight.dtype != torch.int8)
        self.assertTrue(isinstance(seq_classification_model.classifier.out_proj, nn.Linear))
        self.assertTrue(seq_classification_model.classifier.out_proj != torch.int8)

255
256
257
258
259
260
261
262
263
264
265
    def test_generate_quality(self):
        r"""
        Test the generation quality of the quantized model and see that we are matching the expected output.
        Given that we are operating on small numbers + the testing model is relatively small, we might not get
        the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
        """
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

266
267
268
269
270
    def test_generate_quality_config(self):
        r"""
        Test that loading the model with the config is equivalent
        """
        bnb_config = BitsAndBytesConfig()
271
        bnb_config.load_in_8bit = True
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

        model_8bit_from_config = AutoModelForCausalLM.from_pretrained(
            self.model_name, quantization_config=bnb_config, device_map="auto"
        )

        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = model_8bit_from_config.generate(
            input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10
        )

        self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

    def test_raise_if_config_and_load_in_8bit(self):
        r"""
        Test that loading the model with the config and `load_in_8bit` raises an error
        """
        bnb_config = BitsAndBytesConfig()

        with self.assertRaises(ValueError):
            _ = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                quantization_config=bnb_config,
                load_in_8bit=True,
                device_map="auto",
                llm_int8_enable_fp32_cpu_offload=True,
            )

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
        Checks also if other models are casted correctly.
        """
        with self.assertRaises(ValueError):
            # Tries with `str`
            self.model_8bit.to("cpu")

        with self.assertRaises(ValueError):
            # Tries with a `dtype``
            self.model_8bit.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.to(torch.device("cuda:0"))

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.float()

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.half()

        # Test if we did not break anything
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        self.model_fp16 = self.model_fp16.to(torch.float32)
        _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Check this does not throw an error
        _ = self.model_fp16.to("cpu")

        # Check this does not throw an error
        _ = self.model_fp16.half()

        # Check this does not throw an error
        _ = self.model_fp16.float()

339
340
341
342
343
344
345
    def test_fp32_int8_conversion(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
        """
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_8bit=True, device_map="auto")
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    def test_int8_serialization(self):
        r"""
        Test whether it is possible to serialize a model in 8-bit.
        """
        from bitsandbytes.nn import Int8Params

        with tempfile.TemporaryDirectory() as tmpdirname:
            self.model_8bit.save_pretrained(tmpdirname)

            # check that the file `quantization_config` is present
            config = AutoConfig.from_pretrained(tmpdirname)
            self.assertTrue(hasattr(config, "quantization_config"))

            model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto")

361
362
363
            linear = get_some_linear_layer(model_from_saved)
            self.assertTrue(linear.weight.__class__ == Int8Params)
            self.assertTrue(hasattr(linear.weight, "SCB"))
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

            # generate
            encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
            output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

            self.assertEqual(
                self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT
            )

    def test_int8_serialization_sharded(self):
        r"""
        Test whether it is possible to serialize a model in 8-bit - sharded version.
        """
        from bitsandbytes.nn import Int8Params

        with tempfile.TemporaryDirectory() as tmpdirname:
            self.model_8bit.save_pretrained(tmpdirname, max_shard_size="200MB")

            # check that the file `quantization_config` is present
            config = AutoConfig.from_pretrained(tmpdirname)
            self.assertTrue(hasattr(config, "quantization_config"))

            model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname)

388
389
390
            linear = get_some_linear_layer(model_from_saved)
            self.assertTrue(linear.weight.__class__ == Int8Params)
            self.assertTrue(hasattr(linear.weight, "SCB"))
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

            # generate
            encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
            output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

            self.assertEqual(
                self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT
            )

    def test_int8_from_pretrained(self):
        r"""
        Test whether loading a 8bit model from the Hub works as expected
        """
        from bitsandbytes.nn import Int8Params

        model_id = "ybelkada/bloom-1b7-8bit"

        model = AutoModelForCausalLM.from_pretrained(model_id)

410
411
412
        linear = get_some_linear_layer(model)
        self.assertTrue(linear.weight.__class__ == Int8Params)
        self.assertTrue(hasattr(linear.weight, "SCB"))
413
414
415
416
417
418
419

        # generate
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class MixedInt8T5Test(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model_name = "t5-small"
        cls.dense_act_model_name = "google/flan-t5-small"  # flan-t5 uses dense-act instead of dense-relu-dense
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
        cls.input_text = "Translate in German: Hello, my dog is cute"

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        gc.collect()
        torch.cuda.empty_cache()

    def test_inference_without_keep_in_fp32(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
        both cases.
        """
        from transformers import T5ForConditionalGeneration

450
        modules = T5ForConditionalGeneration._keep_in_fp32_modules
451
452
453
454
455
456
457
458
459
460
461
462
463
        T5ForConditionalGeneration._keep_in_fp32_modules = None

        # test with `t5-small`
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

        # test with `flan-t5-small`
        model = T5ForConditionalGeneration.from_pretrained(
            self.dense_act_model_name, load_in_8bit=True, device_map="auto"
        )
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)
464
        T5ForConditionalGeneration._keep_in_fp32_modules = modules
465
466
467
468
469
470
471

    def test_inference_with_keep_in_fp32(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
        both cases.
        """
472
473
        import bitsandbytes as bnb

474
475
476
477
        from transformers import T5ForConditionalGeneration

        # test with `t5-small`
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
478
479
480
481

        # there was a bug with decoders - this test checks that it is fixed
        self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))

482
483
484
485
486
487
488
489
490
491
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

        # test with `flan-t5-small`
        model = T5ForConditionalGeneration.from_pretrained(
            self.dense_act_model_name, load_in_8bit=True, device_map="auto"
        )
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    def test_inference_with_keep_in_fp32_serialized(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly on
        a serialized model.
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
        both cases.
        """
        import bitsandbytes as bnb

        from transformers import T5ForConditionalGeneration

        # test with `t5-small`
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

            model = T5ForConditionalGeneration.from_pretrained(tmp_dir)

            # there was a bug with decoders - this test checks that it is fixed
            self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))

            encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
            _ = model.generate(**encoded_input)

            # test with `flan-t5-small`
            model = T5ForConditionalGeneration.from_pretrained(
                self.dense_act_model_name, load_in_8bit=True, device_map="auto"
            )
            encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
            _ = model.generate(**encoded_input)

524

525
526
527
528
529
class MixedInt8ModelClassesTest(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()
        # model_name
        self.model_name = "bigscience/bloom-560m"
530
531
532
533
        self.seq_to_seq_name = "t5-small"

        # Different types of model

534
        self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
535
        # Sequence classification model
536
537
538
        self.sequence_model = AutoModelForSequenceClassification.from_pretrained(
            self.model_name, load_in_8bit=True, device_map="auto"
        )
539
        # CausalLM model
540
        self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
541
542
543
544
        # Seq2seq model
        self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained(
            self.seq_to_seq_name, load_in_8bit=True, device_map="auto"
        )
545
546
547
548
549
550
551
552
553

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.base_model
        del self.sequence_model
        del self.model_8bit
554
        del self.seq_to_seq_model
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

        gc.collect()
        torch.cuda.empty_cache()

    def test_correct_head_class(self):
        r"""
        A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification)
        are kept in their native class.
        """
        from bitsandbytes.nn import Int8Params

        # last param of a base model should be a linear8bit module
        self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params)

        # Other heads should be nn.Parameter
        self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter)
        self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
572
        self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619


class MixedInt8TestPipeline(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.pipe

        gc.collect()
        torch.cuda.empty_cache()

    def test_pipeline(self):
        r"""
        The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since
        we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
        on pipline.
        """
        # self._clear_cuda_cache()
        self.pipe = pipeline(
            "text-generation",
            model=self.model_name,
            model_kwargs={"device_map": "auto", "load_in_8bit": True},
            max_new_tokens=self.MAX_NEW_TOKENS,
        )

        # Real second forward pass
        pipeline_output = self.pipe(self.input_text)
        self.assertEqual(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUT)


@require_torch_multi_gpu
class MixedInt8TestMultiGpu(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

    def test_multi_gpu_loading(self):
        r"""
        This tests that the model has been loaded and can be used correctly on a multi-GPU setup.
        Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice
        """

        model_parallel = AutoModelForCausalLM.from_pretrained(
620
            self.model_name, load_in_8bit=True, device_map="balanced"
621
622
        )

Younes Belkada's avatar
Younes Belkada committed
623
624
        # Check correct device map
        self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1})
625
626
627
628
629
630
631

        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Second real batch
        output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
        self.assertEqual(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
632
633


634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
@require_torch_multi_gpu
class MixedInt8TestCpuGpu(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

    def check_inference_correctness(self, model):
        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Check the exactness of the results
        output_parallel = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Get the generation
        output_text = self.tokenizer.decode(output_parallel[0], skip_special_tokens=True)
        self.assertEqual(output_text, self.EXPECTED_OUTPUT)

    def test_cpu_gpu_loading_random_device_map(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a random `device_map`.
        """
        device_map = {
            "transformer.word_embeddings": 0,
            "transformer.word_embeddings_layernorm": 0,
            "lm_head": 0,
            "transformer.h.0": "cpu",
            "transformer.h.1": "cpu",
            "transformer.h.2": 0,
            "transformer.h.3": 0,
            "transformer.h.4": 0,
            "transformer.h.5": 0,
            "transformer.h.6": 0,
            "transformer.h.7": 0,
            "transformer.h.8": 0,
            "transformer.h.9": 1,
            "transformer.h.10": 0,
            "transformer.h.11": 1,
            "transformer.h.12": 0,
            "transformer.h.13": 0,
            "transformer.h.14": 1,
            "transformer.h.15": 0,
            "transformer.h.16": 0,
            "transformer.h.17": 1,
            "transformer.h.18": 1,
            "transformer.h.19": 0,
            "transformer.h.20": 1,
            "transformer.h.21": 1,
            "transformer.h.22": 0,
            "transformer.h.23": 0,
            "transformer.ln_f": 1,
        }

        bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)

        model_8bit = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            device_map=device_map,
            quantization_config=bnb_config,
        )

        # Check that the model has been correctly set on device 0, 1, and `cpu`.
        self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})

        self.check_inference_correctness(model_8bit)

    def test_cpu_gpu_loading_custom_device_map(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
        This time the device map is more organized than the test above and uses the abstraction
        `transformer.h` to encapsulate all the decoder layers.
        """
        device_map = {
            "transformer.word_embeddings": "cpu",
            "transformer.word_embeddings_layernorm": "cpu",
            "lm_head": "cpu",
            "transformer.h": 0,
            "transformer.ln_f": 1,
        }
        bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)

        # Load model
        model_8bit = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            device_map=device_map,
            quantization_config=bnb_config,
        )

        # Check that the model has been correctly set on device 0, 1, and `cpu`.
        self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})

        self.check_inference_correctness(model_8bit)

    def test_cpu_gpu_disk_loading_custom_device_map(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
        This time we also add `disk` on the device_map.
        """
        device_map = {
            "transformer.word_embeddings": 0,
            "transformer.word_embeddings_layernorm": "cpu",
            "lm_head": 0,
            "transformer.h": 1,
            "transformer.ln_f": "disk",
        }
        bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
        with tempfile.TemporaryDirectory() as tmpdirname:
            # Load model
            model_8bit = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                device_map=device_map,
                quantization_config=bnb_config,
                offload_folder=tmpdirname,
            )

            # Check that the model has been correctly set on device 0, 1, and `cpu`.
            self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})

            self.check_inference_correctness(model_8bit)

    def test_cpu_gpu_disk_loading_custom_device_map_kwargs(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
        This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config
        """
        device_map = {
            "transformer.word_embeddings": 0,
            "transformer.word_embeddings_layernorm": "cpu",
            "lm_head": 0,
            "transformer.h": 1,
            "transformer.ln_f": "disk",
        }
        with tempfile.TemporaryDirectory() as tmpdirname:
            # Load model
            model_8bit = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                device_map=device_map,
Marc Sun's avatar
Marc Sun committed
769
                load_in_8bit=True,
770
771
772
773
774
775
776
777
778
779
                llm_int8_enable_fp32_cpu_offload=True,
                offload_folder=tmpdirname,
            )

            # Check that the model has been correctly set on device 0, 1, and `cpu`.
            self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})

            self.check_inference_correctness(model_8bit)


780
781
782
783
784
785
class MixedInt8TestTraining(BaseMixedInt8Test):
    def setUp(self):
        self.model_name = "facebook/opt-350m"
        super().setUp()

    def test_training(self):
786
        if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"):
787
788
789
            return

        # Step 1: freeze all parameters
790
791
792
        model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True)

        self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

        for param in model.parameters():
            param.requires_grad = False  # freeze the model - train adapters later
            if param.ndim == 1:
                # cast the small parameters (e.g. layernorm) to fp32 for stability
                param.data = param.data.to(torch.float32)

        # Step 2: add adapters
        for _, module in model.named_modules():
            if "OPTAttention" in repr(type(module)):
                module.q_proj = LoRALayer(module.q_proj, rank=16)
                module.k_proj = LoRALayer(module.k_proj, rank=16)
                module.v_proj = LoRALayer(module.v_proj, rank=16)

        # Step 3: dummy batch
        batch = self.tokenizer("Test batch ", return_tensors="pt").to(0)

        # Step 4: Check if the gradient is not None
        with torch.cuda.amp.autocast():
            out = model.forward(**batch)
            out.logits.norm().backward()

        for module in model.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
            elif isinstance(module, nn.Embedding):
                self.assertTrue(module.weight.grad is None)
821
822
823
824
825


class MixedInt8GPT2Test(MixedInt8Test):
    model_name = "gpt2-xl"
    EXPECTED_RELATIVE_DIFFERENCE = 1.8720077507258357
826
    EXPECTED_OUTPUT = "Hello my name is John Doe, and I'm a big fan of"
827
828

    def test_int8_from_pretrained(self):
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        r"""
        Test whether loading a 8bit model from the Hub works as expected
        """
        from bitsandbytes.nn import Int8Params

        model_id = "ybelkada/gpt2-xl-8bit"

        model = AutoModelForCausalLM.from_pretrained(model_id)

        linear = get_some_linear_layer(model)
        self.assertTrue(linear.weight.__class__ == Int8Params)
        self.assertTrue(hasattr(linear.weight, "SCB"))

        # generate
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)