test_modeling_tf_auto.py 14.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import copy
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import unittest
thomwolf's avatar
thomwolf committed
19

Kamal Raj's avatar
Kamal Raj committed
20
21
22
23
24
25
26
27
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, TapasConfig, is_tf_available
from transformers.testing_utils import (
    DUMMY_UNKNOWN_IDENTIFIER,
    SMALL_MODEL_IDENTIFIER,
    require_tensorflow_probability,
    require_tf,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
30
from .test_modeling_bert import BertModelTester

31

32
if is_tf_available():
33
34
    from transformers import (
        TFAutoModel,
35
36
        TFAutoModelForCausalLM,
        TFAutoModelForMaskedLM,
thomwolf's avatar
thomwolf committed
37
        TFAutoModelForPreTraining,
38
39
40
        TFAutoModelForQuestionAnswering,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSequenceClassification,
Kamal Raj's avatar
Kamal Raj committed
41
        TFAutoModelForTableQuestionAnswering,
42
        TFAutoModelForTokenClassification,
43
44
        TFAutoModelWithLMHead,
        TFBertForMaskedLM,
45
        TFBertForPreTraining,
46
        TFBertForQuestionAnswering,
47
48
        TFBertForSequenceClassification,
        TFBertModel,
49
50
        TFFunnelBaseModel,
        TFFunnelModel,
51
        TFGPT2LMHeadModel,
52
        TFRobertaForMaskedLM,
53
        TFT5ForConditionalGeneration,
Kamal Raj's avatar
Kamal Raj committed
54
        TFTapasForQuestionAnswering,
55
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
56
    from transformers.models.auto.modeling_tf_auto import (
57
58
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
59
60
        TF_MODEL_FOR_PRETRAINING_MAPPING,
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
61
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
62
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Kamal Raj's avatar
Kamal Raj committed
63
        TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
64
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
65
        TF_MODEL_MAPPING,
66
        TF_MODEL_WITH_LM_HEAD_MAPPING,
67
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
    from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
Kamal Raj's avatar
Kamal Raj committed
71
    from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
72
73


74
75
76
77
78
79
80
81
82
83
class NewModelConfig(BertConfig):
    model_type = "new-model"


if is_tf_available():

    class TFNewModel(TFBertModel):
        config_class = NewModelConfig


84
@require_tf
thomwolf's avatar
thomwolf committed
85
class TFAutoModelTest(unittest.TestCase):
86
    @slow
thomwolf's avatar
thomwolf committed
87
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
88
        import h5py
89

thomwolf's avatar
thomwolf committed
90
91
        self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))

92
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
93
        for model_name in ["bert-base-uncased"]:
94
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
95
96
97
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

98
            model = TFAutoModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
99
100
101
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertModel)

thomwolf's avatar
thomwolf committed
102
103
104
105
106
107
    @slow
    def test_model_for_pretraining_from_pretrained(self):
        import h5py

        self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))

108
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
109
110
111
112
113
114
115
116
117
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForPreTraining.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForPreTraining)

118
119
120
121
122
123
124
125
126
127
128
129
    @slow
    def test_model_for_causal_lm(self):
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = TFAutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFGPT2LMHeadModel)

130
    @slow
thomwolf's avatar
thomwolf committed
131
    def test_lmhead_model_from_pretrained(self):
132
        for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
133
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
134
135
136
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

137
            model = TFAutoModelWithLMHead.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
138
139
140
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForMaskedLM)

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    @slow
    def test_model_for_masked_lm(self):
        for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFT5ForConditionalGeneration)

165
    @slow
thomwolf's avatar
thomwolf committed
166
    def test_sequence_classification_model_from_pretrained(self):
167
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
168
        for model_name in ["bert-base-uncased"]:
169
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
170
171
172
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

173
            model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
174
175
176
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForSequenceClassification)

177
    @slow
thomwolf's avatar
thomwolf committed
178
    def test_question_answering_model_from_pretrained(self):
179
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
180
        for model_name in ["bert-base-uncased"]:
181
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
182
183
184
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

185
            model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
186
187
188
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForQuestionAnswering)

Kamal Raj's avatar
Kamal Raj committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    @slow
    @require_tensorflow_probability
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = TFAutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFTapasForQuestionAnswering)

Julien Chaumond's avatar
Julien Chaumond committed
204
    def test_from_pretrained_identifier(self):
205
        model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
206
        self.assertIsInstance(model, TFBertForMaskedLM)
Julien Plu's avatar
Julien Plu committed
207
208
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
209
210

    def test_from_identifier_from_model_type(self):
211
        model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
212
        self.assertIsInstance(model, TFRobertaForMaskedLM)
Julien Plu's avatar
Julien Plu committed
213
214
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, TFFunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = TFAutoModel.from_config(config)
        self.assertIsInstance(model, TFFunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = TFAutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, TFFunnelBaseModel)

231
232
233
234
235
236
237
    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models
        mappings = (
            TF_MODEL_MAPPING,
            TF_MODEL_FOR_PRETRAINING_MAPPING,
            TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
Kamal Raj's avatar
Kamal Raj committed
238
            TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
239
240
241
242
243
244
245
246
247
248
249
250
            TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            TF_MODEL_WITH_LM_HEAD_MAPPING,
            TF_MODEL_FOR_CAUSAL_LM_MAPPING,
            TF_MODEL_FOR_MASKED_LM_MAPPING,
            TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
251
                    with self.subTest(msg=f"Testing if {child_config.__name__} is child of {parent_config.__name__}"):
252
                        self.assertFalse(issubclass(child_config, parent_config))
253
254
255
256
257
258
259
260
261

                    # Tuplify child_model and parent_model since some of them could be tuples.
                    if not isinstance(child_model, (list, tuple)):
                        child_model = (child_model,)
                    if not isinstance(parent_model, (list, tuple)):
                        parent_model = (parent_model,)

                    for child, parent in [(a, b) for a in child_model for b in parent_model]:
                        assert not issubclass(child, parent), f"{child.__name__} is child of {parent.__name__}"
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

    def test_new_model_registration(self):
        try:
            AutoConfig.register("new-model", NewModelConfig)

            auto_classes = [
                TFAutoModel,
                TFAutoModelForCausalLM,
                TFAutoModelForMaskedLM,
                TFAutoModelForPreTraining,
                TFAutoModelForQuestionAnswering,
                TFAutoModelForSequenceClassification,
                TFAutoModelForTokenClassification,
            ]

            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, TFNewModel)
                    auto_class.register(NewModelConfig, TFNewModel)
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, TFBertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
                    config = NewModelConfig(**tiny_config.to_dict())
                    model = auto_class.from_config(config)
                    self.assertIsInstance(model, TFNewModel)

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
                        self.assertIsInstance(new_model, TFNewModel)

        finally:
            if "new-model" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["new-model"]
            for mapping in (
                TF_MODEL_MAPPING,
                TF_MODEL_FOR_PRETRAINING_MAPPING,
                TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                TF_MODEL_FOR_CAUSAL_LM_MAPPING,
                TF_MODEL_FOR_MASKED_LM_MAPPING,
            ):
                if NewModelConfig in mapping._extra_content:
                    del mapping._extra_content[NewModelConfig]
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = TFAutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = TFAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named tf_model.h5",
        ):
            _ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_pt_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"):
            _ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")