"vscode:/vscode.git/clone" did not exist on "9ceb96c0c5edbae4b5f5e2701f4bc702af96b087"
tokenization_utils.py 35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
21
22
import json
import six
23
import copy
24
25
26
27
28
29
from io import open

from .file_utils import cached_path

logger = logging.getLogger(__name__)

30
31
SPECIAL_TOKENS_MAP_FILE = 'special_tokens_map.json'
ADDED_TOKENS_FILE = 'added_tokens.json'
32
TOKENIZER_CONFIG_FILE = 'tokenizer_config.json'
33
34

class PreTrainedTokenizer(object):
35
36
    """ Base class for all tokenizers.
    Handle all the shared methods for tokenization and special tokens as well as methods dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
37

38
    This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
39

40
41
42
43
44
    Class attributes (overridden by derived classes):

        - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string).
        - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file.
        - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size.
45
        - ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the ``from_pretrained()`` method.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

    Parameters:

        - ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token``

        - ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token``

        - ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token``

        - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token``

        - ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token``

        - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token``

        - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token``

        - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens``
64
65
66
    """
    vocab_files_names = {}
    pretrained_vocab_files_map = {}
67
    pretrained_init_configuration = {}
68
69
    max_model_input_sizes = {}

70
71
72
73
74
75
    SPECIAL_TOKENS_ATTRIBUTES = ["bos_token", "eos_token", "unk_token", "sep_token",
                                 "pad_token", "cls_token", "mask_token",
                                 "additional_special_tokens"]

    @property
    def bos_token(self):
76
        """ Beginning of sentence token (string). Log an error if used while not having been set. """
77
78
79
80
81
82
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self._bos_token

    @property
    def eos_token(self):
83
        """ End of sentence token (string). Log an error if used while not having been set. """
84
85
86
87
88
89
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self._eos_token

    @property
    def unk_token(self):
90
        """ Unknown token (string). Log an error if used while not having been set. """
91
92
93
94
95
96
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self._unk_token

    @property
    def sep_token(self):
97
        """ Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
98
99
100
101
102
103
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self._sep_token

    @property
    def pad_token(self):
104
        """ Padding token (string). Log an error if used while not having been set. """
105
106
107
108
109
110
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self._pad_token

    @property
    def cls_token(self):
111
        """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
112
113
114
115
116
117
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self._cls_token

    @property
    def mask_token(self):
118
        """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
119
120
121
122
123
124
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self._mask_token

    @property
    def additional_special_tokens(self):
125
        """ All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self._additional_special_tokens

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

    def __init__(self, max_len=None, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._additional_special_tokens = []

        self.max_len = max_len if max_len is not None else int(1e12)
173
174

        # Added tokens
175
176
177
        self.added_tokens_encoder = {}
        self.added_tokens_decoder = {}

178
179
180
181
        # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
        self.init_inputs = ()
        self.init_kwargs = {}

182
        for key, value in kwargs.items():
183
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
184
185
186
187
                if key == 'additional_special_tokens':
                    assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                else:
                    assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
188
189
190
                setattr(self, key, value)


191
192
    @classmethod
    def from_pretrained(cls, *inputs, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
193
194
        r"""
        Instantiate a :class:`~pytorch_transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer.
195

LysandreJik's avatar
Doc  
LysandreJik committed
196
        Args:
197
198
199
200
201
202
203
204
205
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.

206
207
208
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if they exists.

209
210
211
212
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.

            kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.

        Examples::

            # We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer

            # Download vocabulary from S3 and cache.
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

            # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')

            # If the tokenizer uses a single vocabulary file, you can point directly to this file
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')

            # You can link tokens to special vocabulary when instantiating
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
            # You should be sure '<unk>' is in the vocabulary when doing that.
            # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
            assert tokenizer.unk_token == '<unk>'

        """
237
238
        return cls._from_pretrained(*inputs, **kwargs)

239

240
    @classmethod
241
    def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
thomwolf's avatar
thomwolf committed
242
        cache_dir = kwargs.pop('cache_dir', None)
243
        force_download = kwargs.pop('force_download', False)
244
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
245

246
247
        s3_models = list(cls.max_model_input_sizes.keys())
        vocab_files = {}
248
        init_configuration = {}
249
        if pretrained_model_name_or_path in s3_models:
thomwolf's avatar
thomwolf committed
250
            # Get the vocabulary from AWS S3 bucket
251
252
            for file_id, map_list in cls.pretrained_vocab_files_map.items():
                vocab_files[file_id] = map_list[pretrained_model_name_or_path]
253
254
            if cls.pretrained_init_configuration and pretrained_model_name_or_path in cls.pretrained_init_configuration:
                init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path]
255
        else:
thomwolf's avatar
thomwolf committed
256
            # Get the vocabulary from local files
257
258
259
260
261
            logger.info(
                "Model name '{}' not found in model shortcut name list ({}). "
                "Assuming '{}' is a path or url to a directory containing tokenizer files.".format(
                    pretrained_model_name_or_path, ', '.join(s3_models),
                    pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
262
263
264

            # Look for the tokenizer main vocabulary files
            for file_id, file_name in cls.vocab_files_names.items():
265
                if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
266
                    # If a directory is provided we look for the standard filenames
267
268
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                else:
thomwolf's avatar
thomwolf committed
269
                    # If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file)
270
271
                    full_file_name = pretrained_model_name_or_path
                if not os.path.exists(full_file_name):
272
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
273
274
                    full_file_name = None
                vocab_files[file_id] = full_file_name
thomwolf's avatar
thomwolf committed
275
276

            # Look for the additional tokens files
277
278
279
280
            additional_files_names = {'added_tokens_file': ADDED_TOKENS_FILE,
                                      'special_tokens_map_file': SPECIAL_TOKENS_MAP_FILE,
                                      'tokenizer_config_file': TOKENIZER_CONFIG_FILE,
                                      }
thomwolf's avatar
thomwolf committed
281
282
283
284
285
286

            # If a path to a file was provided, get the parent directory
            saved_directory = pretrained_model_name_or_path
            if os.path.exists(saved_directory) and not os.path.isdir(saved_directory):
                saved_directory = os.path.dirname(saved_directory)

287
            for file_id, file_name in additional_files_names.items():
thomwolf's avatar
thomwolf committed
288
289
290
291
292
293
                full_file_name = os.path.join(saved_directory, file_name)
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

294
295
296
297
298
299
300
301
            if all(full_file_name is None for full_file_name in vocab_files.values()):
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find tokenizer files"
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, ))
                return None
302
303

        # Get files from url, cache, or disk depending on the case
304
305
306
307
308
309
        try:
            resolved_vocab_files = {}
            for file_id, file_path in vocab_files.items():
                if file_path is None:
                    resolved_vocab_files[file_id] = None
                else:
310
                    resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
311
        except EnvironmentError as e:
312
313
314
315
316
317
318
319
320
            if pretrained_model_name_or_path in s3_models:
                logger.error("Couldn't reach server to download vocabulary.")
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, str(vocab_files.keys())))
321
            raise e
322
323
324
325
326
327
328
329

        for file_id, file_path in vocab_files.items():
            if file_path == resolved_vocab_files[file_id]:
                logger.info("loading file {}".format(file_path))
            else:
                logger.info("loading file {} from cache at {}".format(
                    file_path, resolved_vocab_files[file_id]))

330
331
332
333
334
        # Prepare tokenizer initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        tokenizer_config_file = resolved_vocab_files.pop('tokenizer_config_file', None)
        if tokenizer_config_file is not None:
            init_kwargs = json.load(open(tokenizer_config_file, encoding="utf-8"))
335
            saved_init_inputs = init_kwargs.pop('init_inputs', ())
336
337
338
339
340
341
            if not init_inputs:
                init_inputs = saved_init_inputs
        else:
            init_kwargs = init_configuration

        # Update with newly provided kwargs
342
343
        init_kwargs.update(kwargs)

344
        # Set max length if needed
345
346
347
348
        if pretrained_model_name_or_path in cls.max_model_input_sizes:
            # if we're using a pretrained model, ensure the tokenizer
            # wont index sequences longer than the number of positional embeddings
            max_len = cls.max_model_input_sizes[pretrained_model_name_or_path]
349
            if max_len is not None and isinstance(max_len, (int, float)):
350
                init_kwargs['max_len'] = min(init_kwargs.get('max_len', int(1e12)), max_len)
351

352
        # Merge resolved_vocab_files arguments in init_kwargs.
353
354
        added_tokens_file = resolved_vocab_files.pop('added_tokens_file', None)
        special_tokens_map_file = resolved_vocab_files.pop('special_tokens_map_file', None)
thomwolf's avatar
thomwolf committed
355
        for args_name, file_path in resolved_vocab_files.items():
356
357
            if args_name not in init_kwargs:
                init_kwargs[args_name] = file_path
358
359
360
        if special_tokens_map_file is not None:
            special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8"))
            for key, value in special_tokens_map.items():
361
362
                if key not in init_kwargs:
                    init_kwargs[key] = value
thomwolf's avatar
thomwolf committed
363

364
        # Instantiate tokenizer.
365
366
367
368
369
        tokenizer = cls(*init_inputs, **init_kwargs)

        # Save inputs and kwargs for saving and re-loading with ``save_pretrained``
        tokenizer.init_inputs = init_inputs
        tokenizer.init_kwargs = init_kwargs
370

371
372
        # Add supplementary tokens.
        if added_tokens_file is not None:
thomwolf's avatar
thomwolf committed
373
            added_tok_encoder = json.load(open(added_tokens_file, encoding="utf-8"))
374
375
376
377
            added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
            tokenizer.added_tokens_encoder.update(added_tok_encoder)
            tokenizer.added_tokens_decoder.update(added_tok_decoder)

378
379
        return tokenizer

thomwolf's avatar
thomwolf committed
380

381
    def save_pretrained(self, save_directory):
382
383
384
385
386
387
388
        """ Save the tokenizer vocabulary files together with:
                - added tokens,
                - special-tokens-to-class-attributes-mapping,
                - tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert).

            This won't save modifications other than (added tokens and special token mapping) you may have
            applied to the tokenizer after the instantion (e.g. modifying tokenizer.do_lower_case after creation).
389
390

            This method make sure the full tokenizer can then be re-loaded using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
391
392
393
394
395
396
397
        """
        if not os.path.isdir(save_directory):
            logger.error("Saving directory ({}) should be a directory".format(save_directory))
            return

        special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE)
        added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE)
398
399
400
401
        tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE)

        tokenizer_config = copy.deepcopy(self.init_kwargs)
        tokenizer_config['init_inputs'] = copy.deepcopy(self.init_inputs)
402
403
        for file_id in self.vocab_files_names.keys():
            tokenizer_config.pop(file_id, None)
404
405
406

        with open(tokenizer_config_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(tokenizer_config, ensure_ascii=False))
407
408
409
410
411

        with open(special_tokens_map_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.special_tokens_map, ensure_ascii=False))

        with open(added_tokens_file, 'w', encoding='utf-8') as f:
thomwolf's avatar
thomwolf committed
412
            if self.added_tokens_encoder:
413
                out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False)
thomwolf's avatar
thomwolf committed
414
415
416
            else:
                out_str = u"{}"
            f.write(out_str)
417
418
419
420
421
422
423

        vocab_files = self.save_vocabulary(save_directory)

        return vocab_files + (special_tokens_map_file, added_tokens_file)


    def save_vocabulary(self, save_directory):
424
        """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
425
            and special token mappings.
426
427

            Please use :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
428
        """
thomwolf's avatar
thomwolf committed
429
430
        raise NotImplementedError

431
432

    def vocab_size(self):
433
        """ Size of the base vocabulary (without the added tokens) """
thomwolf's avatar
thomwolf committed
434
435
        raise NotImplementedError

436
437

    def __len__(self):
438
        """ Size of the full vocabulary with the added tokens """
439
440
441
442
        return self.vocab_size + len(self.added_tokens_encoder)


    def add_tokens(self, new_tokens):
LysandreJik's avatar
Doc  
LysandreJik committed
443
444
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
445
446
        vocabulary, they are added to it with indices starting from length of the current vocabulary.

LysandreJik's avatar
Doc  
LysandreJik committed
447
448
        Args:
            new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
449

LysandreJik's avatar
Doc  
LysandreJik committed
450
451
        Returns:
            Number of tokens added to the vocabulary.
452
453
454
455
456
457
458
459
460
461

        Examples::

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')

            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
462
463
464
465
466
467
        """
        if not new_tokens:
            return 0

        to_add_tokens = []
        for token in new_tokens:
468
            assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode))
thomwolf's avatar
thomwolf committed
469
470
            if token != self.unk_token and \
                    self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token):
471
472
473
474
475
476
477
478
479
480
481
482
                to_add_tokens.append(token)
                logger.info("Adding %s to the vocabulary", token)

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens))
        added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        return len(to_add_tokens)


    def add_special_tokens(self, special_tokens_dict):
LysandreJik's avatar
Doc  
LysandreJik committed
483
484
485
486
        """
        Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them
        to class attributes. If special tokens are NOT in the vocabulary, they are added
        to it (indexed starting from the last index of the current vocabulary).
487

LysandreJik's avatar
Doc  
LysandreJik committed
488
489
490
491
        Args:
            special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes:
                [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``,
                ``additional_special_tokens``].
492

LysandreJik's avatar
Doc  
LysandreJik committed
493
                Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
494

LysandreJik's avatar
Doc  
LysandreJik committed
495
496
        Returns:
            Number of tokens added to the vocabulary.
497
498
499
500
501
502
503
504
505
506
507
508
509
510

        Examples::

            # Let's see how to add a new classification token to GPT-2
            tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            model = GPT2Model.from_pretrained('gpt2')

            special_tokens_dict = {'cls_token': '<CLS>'}

            num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.

            assert tokenizer.cls_token == '<CLS>'
511
512
513
514
        """
        if not special_tokens_dict:
            return 0

515
        added_tokens = 0
516
        for key, value in special_tokens_dict.items():
517
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES
518
519
520
521
522
523
            if key == 'additional_special_tokens':
                assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                added_tokens += self.add_tokens(value)
            else:
                assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
                added_tokens += self.add_tokens([value])
524
525
526
            logger.info("Assigning %s to the %s key of the tokenizer", value, key)
            setattr(self, key, value)

527
        return added_tokens
528
529
530
531
532
533
534
535

    def tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Take care of added tokens.
        """
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                sub_text = sub_text.strip()
                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

554
555
556
557
558
        def split_on_tokens(tok_list, text):
            if not text:
                return []
            if not tok_list:
                return self._tokenize(text, **kwargs)
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.added_tokens_encoder \
                            and sub_text not in self.all_special_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text

            return sum((self._tokenize(token, **kwargs) if token not \
                    in self.added_tokens_encoder and token not in self.all_special_tokens \
                    else [token] for token in tokenized_text), [])
575

576
        added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens
577
578
579
580
581
582
583
584
        tokenized_text = split_on_tokens(added_tokens, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

585
            Do NOT take care of added tokens.
586
        """
thomwolf's avatar
thomwolf committed
587
588
        raise NotImplementedError

589
    def convert_tokens_to_ids(self, tokens):
590
591
        """ Converts a single token, or a sequence of tokens, (str/unicode) in a single integer id
            (resp. a sequence of ids), using the vocabulary.
592
593
        """
        if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)):
594
            return self._convert_token_to_id_with_added_voc(tokens)
595
596
597

        ids = []
        for token in tokens:
598
            ids.append(self._convert_token_to_id_with_added_voc(token))
599
600
601
602
603
604
        if len(ids) > self.max_len:
            logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
                           "for this model ({} > {}). Running this sequence through the model will result in "
                           "indexing errors".format(len(ids), self.max_len))
        return ids

605
    def _convert_token_to_id_with_added_voc(self, token):
606
607
608
609
610
        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
thomwolf's avatar
thomwolf committed
611
612
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
613
    def encode(self, text, text_pair=None, add_special_tokens=False, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
614
615
        """
        Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
616
        
LysandreJik's avatar
Doc  
LysandreJik committed
617
618
619
620
621
622
623
        Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``.

        Args:
            text: The first sequence to be encoded.
            text_pair: Optional second sequence to be encoded.
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
thomwolf's avatar
thomwolf committed
624
            **kwargs: passed to the `self.tokenize()` method
625
        """
LysandreJik's avatar
LysandreJik committed
626
        if text_pair is None:
627
            if add_special_tokens:
thomwolf's avatar
thomwolf committed
628
                return self.add_special_tokens_single_sentence(self.convert_tokens_to_ids(self.tokenize(text, **kwargs)))
629
            else:
thomwolf's avatar
thomwolf committed
630
                return self.convert_tokens_to_ids(self.tokenize(text, **kwargs))
631

thomwolf's avatar
thomwolf committed
632
633
        first_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text, **kwargs)]
        second_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text_pair, **kwargs)]
634

635
636
637
638
        if add_special_tokens:
            return self.add_special_tokens_sentences_pair(first_sentence_tokens, second_sentence_tokens)
        else:
            return first_sentence_tokens, second_sentence_tokens
639

640
641
    def add_special_tokens_single_sentence(self, token_ids):
        raise NotImplementedError
642

643
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
644
        raise NotImplementedError
645

646
647
648
649
650
651
652
653
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """ Converts a single index or a sequence of indices (integers) in a token "
            (resp.) a sequence of tokens (str/unicode), using the vocabulary and added tokens.

            Args:
                skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
        """
        if isinstance(ids, int):
654
655
656
657
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
658
659
660
661
662
663
664
665
666
667
668
        tokens = []
        for index in ids:
            if index in self.all_special_ids and skip_special_tokens:
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index):
thomwolf's avatar
thomwolf committed
669
670
        raise NotImplementedError

671
672
673
674
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string.
            The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
            but we often want to remove sub-word tokenization artifacts at the same time.
675
        """
676
        return ' '.join(self.convert_ids_to_tokens(tokens))
677
678

    def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
LysandreJik's avatar
Doc  
LysandreJik committed
679
680
681
        """
        Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
        with options to remove special tokens and clean up tokenization spaces.
682
        Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.
683
684
        """
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
685
        text = self.convert_tokens_to_string(filtered_tokens)
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

        if self.sep_token is not None and self.sep_token in text:
            text = text.replace(self.cls_token, self.sep_token)
            split_text = list(filter(lambda sentence: len(sentence) > 0, text.split(self.sep_token)))
            if clean_up_tokenization_spaces:
                clean_text = [self.clean_up_tokenization(text) for text in split_text]
                return clean_text
            else:
                return split_text
        else:
            if clean_up_tokenization_spaces:
                clean_text = self.clean_up_tokenization(text)
                return clean_text
            else:
                return text
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

    @property
    def special_tokens_map(self):
        """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their
            values ('<unk>', '<cls>'...)
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self):
        """ List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes
            (cls_token, unk_token...).
        """
        all_toks = []
        set_attr = self.special_tokens_map
        for attr_value in set_attr.values():
            all_toks = all_toks + (attr_value if isinstance(attr_value, (list, tuple)) else [attr_value])
        all_toks = list(set(all_toks))
        return all_toks

    @property
    def all_special_ids(self):
        """ List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to
            class attributes (cls_token, unk_token...).
        """
        all_toks = self.all_special_tokens
732
        all_ids = list(self._convert_token_to_id(t) for t in all_toks)
733
734
        return all_ids

thomwolf's avatar
thomwolf committed
735
736
    @staticmethod
    def clean_up_tokenization(out_string):
737
738
        """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms.
        """
thomwolf's avatar
thomwolf committed
739
740
741
742
        out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
                        ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
                        ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
        return out_string