run_text_classification.py 24.7 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
16
"""Fine-tuning the library models for sequence classification."""
Matt's avatar
Matt committed
17
18
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.

Matt's avatar
Matt committed
19
import json
Matt's avatar
Matt committed
20
21
22
23
24
25
26
27
28
import logging
import os
import sys
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional

import numpy as np
from datasets import load_dataset
29
from packaging.version import parse
Matt's avatar
Matt committed
30
31
32
33
34
35

from transformers import (
    AutoConfig,
    AutoTokenizer,
    HfArgumentParser,
    PretrainedConfig,
Matt's avatar
Matt committed
36
    PushToHubCallback,
Matt's avatar
Matt committed
37
    TFAutoModelForSequenceClassification,
38
    TFTrainingArguments,
Matt's avatar
Matt committed
39
    create_optimizer,
Matt's avatar
Matt committed
40
41
    set_seed,
)
42
from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, send_example_telemetry
Matt's avatar
Matt committed
43
44
45
46
47
48


os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"  # Reduce the amount of console output from TF
import tensorflow as tf  # noqa: E402


49
50
51
52
53
54
55
56
57
58
59
60
61
try:
    import tf_keras as keras
except (ModuleNotFoundError, ImportError):
    import keras

    if parse(keras.__version__).major > 2:
        raise ValueError(
            "Your currently installed version of Keras is Keras 3, but this is not yet supported in "
            "Transformers. Please install the backwards-compatible tf-keras package with "
            "`pip install tf-keras`."
        )


Matt's avatar
Matt committed
62
63
64
65
logger = logging.getLogger(__name__)


# region Helper classes
66
class SavePretrainedCallback(keras.callbacks.Callback):
Matt's avatar
Matt committed
67
68
69
70
71
72
73
74
75
76
77
78
79
    # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary
    # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback
    # that saves the model with this method after each epoch.
    def __init__(self, output_dir, **kwargs):
        super().__init__()
        self.output_dir = output_dir

    def on_epoch_end(self, epoch, logs=None):
        self.model.save_pretrained(self.output_dir)


# endregion

80

Matt's avatar
Matt committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# region Command-line arguments
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})

    max_seq_length: int = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
103
104
105
106
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
107
108
109
110
111
112
113
114
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
117
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. "
Sylvain Gugger's avatar
Sylvain Gugger committed
118
119
                "Data will always be padded when using TPUs."
            )
Matt's avatar
Matt committed
120
121
122
123
124
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
125
126
127
128
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
129
130
        },
    )
131
    max_val_samples: Optional[int] = field(
Matt's avatar
Matt committed
132
133
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
            "help": (
                "For debugging purposes or quicker training, truncate the number of validation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
138
139
        },
    )
140
    max_test_samples: Optional[int] = field(
Matt's avatar
Matt committed
141
142
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
146
            "help": (
                "For debugging purposes or quicker training, truncate the number of test examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        },
    )

    def __post_init__(self):
        train_extension = self.train_file.split(".")[-1].lower() if self.train_file is not None else None
        validation_extension = (
            self.validation_file.split(".")[-1].lower() if self.validation_file is not None else None
        )
        test_extension = self.test_file.split(".")[-1].lower() if self.test_file is not None else None
        extensions = {train_extension, validation_extension, test_extension}
        extensions.discard(None)
        assert len(extensions) != 0, "Need to supply at least one of --train_file, --validation_file or --test_file!"
        assert len(extensions) == 1, "All input files should have the same file extension, either csv or json!"
        assert "csv" in extensions or "json" in extensions, "Input files should have either .csv or .json extensions!"
        self.input_file_extension = extensions.pop()


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
187
188
    token: str = field(
        default=None,
Matt's avatar
Matt committed
189
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
190
            "help": (
191
192
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
193
            )
Matt's avatar
Matt committed
194
195
        },
    )
196
197
198
199
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
200
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
201
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
202
203
204
205
                "execute code present on the Hub on your local machine."
            )
        },
    )
Matt's avatar
Matt committed
206
207
208
209
210
211
212
213
214
215
216


# endregion


def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

217
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
Matt's avatar
Matt committed
218
219
220
221
222
223
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
224
225
226
227
228

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_text_classification", model_args, data_args, framework="tensorflow")

Matt's avatar
Matt committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    output_dir = Path(training_args.output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)
    # endregion

    # region Checkpoints
    # Detecting last checkpoint.
    checkpoint = None
    if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
        if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file():
            checkpoint = output_dir
            logger.info(
                f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
                " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
        else:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to continue regardless."
            )

    # endregion

    # region Logging
    logging.basicConfig(
253
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Matt's avatar
Matt committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)

    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Loading data
    # For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally
    # 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two
    # columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than
    # a single grammatical sentence, when the task requires it.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file}
    data_files = {key: file for key, file in data_files.items() if file is not None}

    for key in data_files.keys():
        logger.info(f"Loading a local file for {key}: {data_files[key]}")

    if data_args.input_file_extension == "csv":
        # Loading a dataset from local csv files
281
282
283
284
        datasets = load_dataset(
            "csv",
            data_files=data_files,
            cache_dir=model_args.cache_dir,
285
            token=model_args.token,
286
        )
Matt's avatar
Matt committed
287
288
289
290
    else:
        # Loading a dataset from local json files
        datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset at
291
    # https://huggingface.co/docs/datasets/loading_datasets.
Matt's avatar
Matt committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    # endregion

    # region Label preprocessing
    # If you've passed us a training set, we try to infer your labels from it
    if "train" in datasets:
        # By default we assume that if your label column looks like a float then you're doing regression,
        # and if not then you're doing classification. This is something you may want to change!
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
    # If you haven't passed a training set, we read label info from the saved model (this happens later)
    else:
        num_labels = None
        label_list = None
        is_regression = None
    # endregion

315
    # region Load model config and tokenizer
Matt's avatar
Matt committed
316
317
318
319
320
321
322
323
324
325
326
327
    if checkpoint is not None:
        config_path = training_args.output_dir
    elif model_args.config_name:
        config_path = model_args.config_name
    else:
        config_path = model_args.model_name_or_path
    if num_labels is not None:
        config = AutoConfig.from_pretrained(
            config_path,
            num_labels=num_labels,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
328
            token=model_args.token,
329
            trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
330
331
332
333
334
335
        )
    else:
        config = AutoConfig.from_pretrained(
            config_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
336
            token=model_args.token,
337
            trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
338
339
340
341
342
        )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
343
        token=model_args.token,
344
        trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    )
    # endregion

    # region Dataset preprocessing
    # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
    column_names = {col for cols in datasets.column_names.values() for col in cols}
    non_label_column_names = [name for name in column_names if name != "label"]
    if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", "sentence2"
    elif "sentence1" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", None
    else:
        if len(non_label_column_names) >= 2:
            sentence1_key, sentence2_key = non_label_column_names[:2]
        else:
            sentence1_key, sentence2_key = non_label_column_names[0], None

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
364
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
Matt's avatar
Matt committed
365
366
367
368
369
370
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Ensure that our labels match the model's, if it has some pre-specified
    if "train" in datasets:
371
372
        if not is_regression and config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
            label_name_to_id = config.label2id
373
            if sorted(label_name_to_id.keys()) == sorted(label_list):
Matt's avatar
Matt committed
374
375
376
377
                label_to_id = label_name_to_id  # Use the model's labels
            else:
                logger.warning(
                    "Your model seems to have been trained with labels, but they don't match the dataset: ",
378
379
                    f"model labels: {sorted(label_name_to_id.keys())}, dataset labels:"
                    f" {sorted(label_list)}.\nIgnoring the model labels as a result.",
Matt's avatar
Matt committed
380
381
382
383
384
385
386
                )
                label_to_id = {v: i for i, v in enumerate(label_list)}
        elif not is_regression:
            label_to_id = {v: i for i, v in enumerate(label_list)}
        else:
            label_to_id = None
        # Now we've established our label2id, let's overwrite the model config with it.
387
388
389
        config.label2id = label_to_id
        if config.label2id is not None:
            config.id2label = {id: label for label, id in label_to_id.items()}
Matt's avatar
Matt committed
390
        else:
391
            config.id2label = None
Matt's avatar
Matt committed
392
    else:
393
        label_to_id = config.label2id  # Just load the data from the model
Matt's avatar
Matt committed
394

395
    if "validation" in datasets and config.label2id is not None:
Matt's avatar
Matt committed
396
397
398
399
400
401
402
403
404
        validation_label_list = datasets["validation"].unique("label")
        for val_label in validation_label_list:
            assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!"

    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
405
        result = tokenizer(*args, max_length=max_seq_length, truncation=True)
Matt's avatar
Matt committed
406
407

        # Map labels to IDs
408
409
        if config.label2id is not None and "label" in examples:
            result["label"] = [(config.label2id[l] if l != -1 else -1) for l in examples["label"]]
Matt's avatar
Matt committed
410
411
412
        return result

    datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)
413

Matt's avatar
Matt committed
414
415
    # endregion

416
417
418
419
420
421
422
423
424
    with training_args.strategy.scope():
        # region Load pretrained model
        # Set seed before initializing model
        set_seed(training_args.seed)
        #
        # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
        # download model & vocab.
        if checkpoint is None:
            model_path = model_args.model_name_or_path
Matt's avatar
Matt committed
425
        else:
426
427
428
429
430
431
            model_path = checkpoint
        model = TFAutoModelForSequenceClassification.from_pretrained(
            model_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
432
            token=model_args.token,
433
            trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
434
        )
435
436
        # endregion

Matt's avatar
Matt committed
437
        # region Convert data to a tf.data.Dataset
Matt's avatar
Matt committed
438
439
440
        dataset_options = tf.data.Options()
        dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
        num_replicas = training_args.strategy.num_replicas_in_sync
441

442
        tf_data = {}
443
444
445
446
447
448
449
450
451
        max_samples = {
            "train": data_args.max_train_samples,
            "validation": data_args.max_val_samples,
            "test": data_args.max_test_samples,
        }
        for key in ("train", "validation", "test"):
            if key not in datasets:
                tf_data[key] = None
                continue
Matt's avatar
Matt committed
452
453
454
455
456
457
458
            if (
                (key == "train" and not training_args.do_train)
                or (key == "validation" and not training_args.do_eval)
                or (key == "test" and not training_args.do_predict)
            ):
                tf_data[key] = None
                continue
459
460
461
462
            if key in ("train", "validation"):
                assert "label" in datasets[key].features, f"Missing labels from {key} data!"
            if key == "train":
                shuffle = True
Matt's avatar
Matt committed
463
                batch_size = training_args.per_device_train_batch_size * num_replicas
464
465
            else:
                shuffle = False
Matt's avatar
Matt committed
466
                batch_size = training_args.per_device_eval_batch_size * num_replicas
467
468
469
470
            samples_limit = max_samples[key]
            dataset = datasets[key]
            if samples_limit is not None:
                dataset = dataset.select(range(samples_limit))
Matt's avatar
Matt committed
471
472
473
474
475
476
477
478
479
480
481
482

            # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
            # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
            # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
            # yourself if you use this method, whereas they are automatically inferred from the model input names when
            # using model.prepare_tf_dataset()
            # For more info see the docs:
            # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
            # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

            data = model.prepare_tf_dataset(
                dataset,
483
                shuffle=shuffle,
484
                batch_size=batch_size,
Matt's avatar
Matt committed
485
                tokenizer=tokenizer,
486
            )
Matt's avatar
Matt committed
487
            data = data.with_options(dataset_options)
488
489
490
            tf_data[key] = data
        # endregion

Matt's avatar
Matt committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
        # region Optimizer, loss and compilation

        if training_args.do_train:
            num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs
            if training_args.warmup_steps > 0:
                num_warmup_steps = training_args.warmup_steps
            elif training_args.warmup_ratio > 0:
                num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
            else:
                num_warmup_steps = 0

            optimizer, schedule = create_optimizer(
                init_lr=training_args.learning_rate,
                num_train_steps=num_train_steps,
                num_warmup_steps=num_warmup_steps,
                adam_beta1=training_args.adam_beta1,
                adam_beta2=training_args.adam_beta2,
                adam_epsilon=training_args.adam_epsilon,
                weight_decay_rate=training_args.weight_decay,
                adam_global_clipnorm=training_args.max_grad_norm,
            )
        else:
513
            optimizer = "sgd"  # Just use any default
Matt's avatar
Matt committed
514
515
516
517
        if is_regression:
            metrics = []
        else:
            metrics = ["accuracy"]
518
519
        # Transformers models compute the right loss for their task by default when labels are passed, and will
        # use this for training unless you specify your own loss function in compile().
Matt's avatar
Matt committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        model.compile(optimizer=optimizer, metrics=metrics)
        # endregion

        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            push_to_hub_model_id = f"{model_name}-finetuned-text-classification"

        model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}

        if training_args.push_to_hub:
            callbacks = [
                PushToHubCallback(
                    output_dir=training_args.output_dir,
535
536
                    hub_model_id=push_to_hub_model_id,
                    hub_token=training_args.push_to_hub_token,
Matt's avatar
Matt committed
537
538
539
540
541
542
543
544
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            ]
        else:
            callbacks = []
        # endregion

545
546
547
548
549
550
551
552
        # region Training and validation
        if tf_data["train"] is not None:
            model.fit(
                tf_data["train"],
                validation_data=tf_data["validation"],
                epochs=int(training_args.num_train_epochs),
                callbacks=callbacks,
            )
Matt's avatar
Matt committed
553
        if tf_data["validation"] is not None:
554
555
556
            logger.info("Computing metrics on validation data...")
            if is_regression:
                loss = model.evaluate(tf_data["validation"])
Matt's avatar
Matt committed
557
                logger.info(f"Eval loss: {loss:.5f}")
558
559
            else:
                loss, accuracy = model.evaluate(tf_data["validation"])
Matt's avatar
Matt committed
560
561
562
563
564
565
566
567
                logger.info(f"Eval loss: {loss:.5f}, Eval accuracy: {accuracy * 100:.4f}%")
            if training_args.output_dir is not None:
                output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
                eval_dict = {"eval_loss": loss}
                if not is_regression:
                    eval_dict["eval_accuracy"] = accuracy
                with open(output_eval_file, "w") as writer:
                    writer.write(json.dumps(eval_dict))
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        # endregion

        # region Prediction
        if tf_data["test"] is not None:
            logger.info("Doing predictions on test dataset...")
            predictions = model.predict(tf_data["test"])["logits"]
            predicted_class = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
            output_test_file = os.path.join(training_args.output_dir, "test_results.txt")
            with open(output_test_file, "w") as writer:
                writer.write("index\tprediction\n")
                for index, item in enumerate(predicted_class):
                    if is_regression:
                        writer.write(f"{index}\t{item:3.3f}\n")
                    else:
                        item = config.id2label[item]
                        writer.write(f"{index}\t{item}\n")
            logger.info(f"Wrote predictions to {output_test_file}!")
        # endregion

Matt's avatar
Matt committed
587
588
589
        if training_args.output_dir is not None and not training_args.push_to_hub:
            # If we're not pushing to hub, at least save a local copy when we're done
            model.save_pretrained(training_args.output_dir)
Matt's avatar
Matt committed
590
591
592
593


if __name__ == "__main__":
    main()