test_modeling_flax_big_bird.py 6.99 KB
Newer Older
Vasudev Gupta's avatar
Vasudev Gupta committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow

from .test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask


if is_flax_available():
26
    import jax
Vasudev Gupta's avatar
Vasudev Gupta committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    from transformers.models.big_bird.modeling_flax_big_bird import (
        FlaxBigBirdForMaskedLM,
        FlaxBigBirdForMultipleChoice,
        FlaxBigBirdForPreTraining,
        FlaxBigBirdForQuestionAnswering,
        FlaxBigBirdForSequenceClassification,
        FlaxBigBirdForTokenClassification,
        FlaxBigBirdModel,
    )


class FlaxBigBirdModelTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=56,
        is_training=True,
        use_attention_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu_new",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_choices=4,
        attention_type="block_sparse",
        use_bias=True,
        rescale_embeddings=False,
        block_size=4,
        num_random_blocks=3,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_choices = num_choices

        self.rescale_embeddings = rescale_embeddings
        self.attention_type = attention_type
        self.use_bias = use_bias
        self.block_size = block_size
        self.num_random_blocks = num_random_blocks

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        config = BigBirdConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            attention_type=self.attention_type,
            block_size=self.block_size,
            num_random_blocks=self.num_random_blocks,
            use_bias=self.use_bias,
            rescale_embeddings=self.rescale_embeddings,
        )

        return config, input_ids, token_type_ids, attention_mask

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, token_type_ids, attention_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
        return config, inputs_dict


@require_flax
class FlaxBigBirdModelTest(FlaxModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            FlaxBigBirdModel,
            FlaxBigBirdForPreTraining,
            FlaxBigBirdForMaskedLM,
            FlaxBigBirdForMultipleChoice,
            FlaxBigBirdForQuestionAnswering,
            FlaxBigBirdForSequenceClassification,
            FlaxBigBirdForTokenClassification,
        )
        if is_flax_available()
        else ()
    )

    test_attn_probs = False

    def setUp(self):
        self.model_tester = FlaxBigBirdModelTester(self)

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("google/bigbird-roberta-base", from_pt=True)
            outputs = model(np.ones((1, 1)))
            self.assertIsNotNone(outputs)

    def test_attention_outputs(self):
        if self.test_attn_probs:
            super().test_attention_outputs()
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    @slow
    # copied from `test_modeling_flax_common` because it takes much longer than other models
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                model = model_class(config)

                @jax.jit
                def model_jitted(input_ids, attention_mask=None, **kwargs):
                    return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):

                    self.assertEqual(jitted_output.shape, output.shape)