test_modeling_stablelm.py 26.7 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch StableLm model."""
Jonathan Tow's avatar
Jonathan Tow committed
16
17
18
19
20
21
22

import unittest

from parameterized import parameterized

from transformers import StableLmConfig, is_torch_available, set_seed
from transformers.testing_utils import (
23
    is_flaky,
Jonathan Tow's avatar
Jonathan Tow committed
24
25
26
    require_bitsandbytes,
    require_flash_attn,
    require_torch,
27
    require_torch_sdpa,
Jonathan Tow's avatar
Jonathan Tow committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    slow,
    torch_device,
)

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        AutoTokenizer,
        StableLmForCausalLM,
        StableLmForSequenceClassification,
45
        StableLmForTokenClassification,
Jonathan Tow's avatar
Jonathan Tow committed
46
47
        StableLmModel,
    )
48
49
50
51
52
    from transformers.models.stablelm.modeling_stablelm import (
        StableLmDynamicNTKScalingRotaryEmbedding,
        StableLmLinearScalingRotaryEmbedding,
        StableLmRotaryEmbedding,
    )
Jonathan Tow's avatar
Jonathan Tow committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289


# Copied from transformers.tests.models.persimmon.test_modeling_persimmon.PersimmonModelTester with Persimmon -> StableLm
class StableLmModelTester:
    # Ignore copy
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=64,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_key_value_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        pad_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.pad_token_id = pad_token_id
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return StableLmConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            num_key_value_heads=self.num_key_value_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = StableLmModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = StableLmModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = StableLmForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = StableLmForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
# Copied from transformers.tests.persimmon.test_modeling_persimmon.PersimmonModelTest with Persimmon -> StableLm
class StableLmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
290
291
292
        (StableLmModel, StableLmForCausalLM, StableLmForSequenceClassification, StableLmForTokenClassification)
        if is_torch_available()
        else ()
Jonathan Tow's avatar
Jonathan Tow committed
293
294
295
296
297
    )
    pipeline_model_mapping = (
        {
            "feature-extraction": StableLmModel,
            "text-classification": StableLmForSequenceClassification,
298
            "token-classification": StableLmForTokenClassification,
Jonathan Tow's avatar
Jonathan Tow committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            # TODO (ydshieh): check why these two fail. Fix them or skip them in a better way.
            # "text-generation": StableLmForCausalLM,
            # "zero-shot": StableLmForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )

    all_generative_model_classes = (StableLmForCausalLM,) if is_torch_available() else ()
    test_headmasking = False
    test_pruning = False

    def setUp(self):
        self.model_tester = StableLmModelTester(self)
        self.config_tester = ConfigTester(self, config_class=StableLmConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_stablelm_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = StableLmForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_stablelm_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = StableLmForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_stablelm_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = StableLmForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_token_classification_model with Llama->StableLm,llama->stablelm
    def test_stablelm_token_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
        model = StableLmForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
        self.assertEqual(
            result.logits.shape,
            (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
        )

Jonathan Tow's avatar
Jonathan Tow committed
378
    @parameterized.expand([("linear",), ("dynamic",)])
379
380
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_model_rope_scaling_from_config with Llama->StableLm
    def test_model_rope_scaling_from_config(self, scaling_type):
Jonathan Tow's avatar
Jonathan Tow committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        short_input = ids_tensor([1, 10], config.vocab_size)
        long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        original_model = StableLmModel(config)
        original_model.to(torch_device)
        original_model.eval()
        original_short_output = original_model(short_input).last_hidden_state
        original_long_output = original_model(long_input).last_hidden_state

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        config.rope_scaling = {"type": scaling_type, "factor": 10.0}
        scaled_model = StableLmModel(config)
        scaled_model.to(torch_device)
        scaled_model.eval()
        scaled_short_output = scaled_model(short_input).last_hidden_state
        scaled_long_output = scaled_model(long_input).last_hidden_state

        # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
        # maximum sequence length, so the outputs for the short input should match.
        if scaling_type == "dynamic":
            self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
        else:
            self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))

        # The output should be different for long inputs
        self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    # Copied from tests.models.falcon.test_modeling_falcon.FalconModelTest.test_model_rope_scaling with Falcon->StableLm
    def test_model_rope_scaling(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        hidden_size = config.hidden_size
        num_heads = config.num_attention_heads
        head_dim = hidden_size // num_heads
        scaling_factor = 10
        short_input_length = 10
        long_input_length = int(config.max_position_embeddings * 1.5)

        # Inputs
        x = torch.randn(1, dtype=torch.float32, device=torch_device)  # used exlusively to get the dtype and the device

        # Sanity check original RoPE
        original_rope = StableLmRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
        ).to(torch_device)
        original_cos_short, original_sin_short = original_rope(x, short_input_length)
        original_cos_long, original_sin_long = original_rope(x, long_input_length)
        torch.testing.assert_close(original_cos_short, original_cos_long[:short_input_length, :])
        torch.testing.assert_close(original_sin_short, original_sin_long[:short_input_length, :])

        # Sanity check linear RoPE scaling
        # New position "x" should match original position with index "x/scaling_factor"
        linear_scaling_rope = StableLmLinearScalingRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
            scaling_factor=scaling_factor,
        ).to(torch_device)
        linear_cos_short, linear_sin_short = linear_scaling_rope(x, short_input_length)
        linear_cos_long, linear_sin_long = linear_scaling_rope(x, long_input_length)
        torch.testing.assert_close(linear_cos_short, linear_cos_long[:short_input_length, :])
        torch.testing.assert_close(linear_sin_short, linear_sin_long[:short_input_length, :])
        for new_position in range(0, long_input_length, scaling_factor):
            original_position = int(new_position // scaling_factor)
            torch.testing.assert_close(linear_cos_long[new_position, :], original_cos_long[original_position, :])
            torch.testing.assert_close(linear_sin_long[new_position, :], original_sin_long[original_position, :])

        # Sanity check Dynamic NTK RoPE scaling
        # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
        # with scaling_factor (or that `inv_freq` decreases)
        ntk_scaling_rope = StableLmDynamicNTKScalingRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
            scaling_factor=scaling_factor,
        ).to(torch_device)
        ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, short_input_length)
        ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, long_input_length)
        torch.testing.assert_close(ntk_cos_short, original_cos_short)
        torch.testing.assert_close(ntk_sin_short, original_sin_short)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_cos_long, original_cos_long)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_sin_long, original_sin_long)
        self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())

Jonathan Tow's avatar
Jonathan Tow committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

@require_torch
class StableLmModelIntegrationTest(unittest.TestCase):
    @slow
    def test_model_stablelm_3b_4e1t_logits(self):
        input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)}

        model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t").to(torch_device)
        model.eval()

        output = model(**input_ids).logits

        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[2.7146, 2.4245, 1.5616, 1.4424, 2.6790]]).to(torch_device)
        self.assertTrue(torch.allclose(output.mean(dim=-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4))

        # Expected logits sliced from [0, 0, 0:30]
        EXPECTED_SLICE = torch.tensor([7.1030, -1.4195,  9.9206,  7.7008,  4.9891,  4.2169,  5.5426,  3.7878, 6.7593,  5.7360,  8.4691,  5.5448,  5.0544, 10.4129,  8.5573, 13.0405, 7.3265,  3.5868,  6.1106,  5.9406,  5.6376,  5.7490,  5.4850,  4.8124, 5.1991,  4.6419,  4.5719,  9.9588,  6.7222,  4.5070]).to(torch_device)  # fmt: skip
        self.assertTrue(torch.allclose(output[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4))

    @slow
    def test_model_stablelm_3b_4e1t_generation(self):
        tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
        model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
        input_ids = tokenizer.encode(
            "My favorite food has always been pizza, but lately",
            return_tensors="pt",
        )

        outputs = model.generate(input_ids, max_new_tokens=20, temperature=0)
        text = tokenizer.decode(outputs[0], skip_special_tokens=True)

        EXPECTED_TEXT_COMPLETION = """My favorite food has always been pizza, but lately I鈥檝e been craving something different. I鈥檝e been trying to eat healthier and I鈥檝e"""
        self.assertEqual(text, EXPECTED_TEXT_COMPLETION)

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    @slow
    def test_model_tiny_random_stablelm_2_logits(self):
        # Check parallel residual and qk layernorm forward pass
        input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)}

        model = StableLmForCausalLM.from_pretrained("stabilityai/tiny-random-stablelm-2").to(torch_device)
        model.eval()

        output = model(**input_ids).logits

        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-2.7196, -3.6099, -2.6877, -3.1973, -3.9344]]).to(torch_device)
        self.assertTrue(torch.allclose(output.mean(dim=-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4))

        # Expected logits sliced from [0, 0, 0:30]
        EXPECTED_SLICE = torch.tensor([2.8364, 5.3811, 5.1659, 7.5485, 4.3219, 6.3315, 1.3967, 6.9147, 3.9679, 6.4786, 5.9176, 3.3067, 5.2917, 0.1485, 3.9630, 7.9947,10.6727, 9.6757, 8.8772, 8.3527, 7.8445, 6.6025, 5.5786, 7.0985,6.1369, 3.4259, 1.9397, 4.6157, 4.8105, 3.1768]).to(torch_device)  # fmt: skip
        self.assertTrue(torch.allclose(output[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4))

    @slow
    def test_model_tiny_random_stablelm_2_generation(self):
        # Check parallel residual and qk layernorm generation
        tokenizer = AutoTokenizer.from_pretrained("stabilityai/tiny-random-stablelm-2")
        model = StableLmForCausalLM.from_pretrained("stabilityai/tiny-random-stablelm-2")
        input_ids = tokenizer.encode(
            "My favorite ride at the amusement park",
            return_tensors="pt",
        )

        outputs = model.generate(input_ids, max_new_tokens=20, temperature=0)
        text = tokenizer.decode(outputs[0], skip_special_tokens=True)

        EXPECTED_TEXT_COMPLETION = """My favorite ride at the amusement park is the 2000-mile roller coaster. It's a thrilling ride filled with roller coast"""
        self.assertEqual(text, EXPECTED_TEXT_COMPLETION)

Jonathan Tow's avatar
Jonathan Tow committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    @require_bitsandbytes
    @slow
    @require_flash_attn
    def test_model_3b_long_prompt(self):
        EXPECTED_OUTPUT_TOKEN_IDS = [3, 3, 3]
        input_ids = [306, 338] * 2047
        model = StableLmForCausalLM.from_pretrained(
            "stabilityai/stablelm-3b-4e1t",
            device_map="auto",
            torch_dtype="auto",
            load_in_4bit=True,
            attn_implementation="flash_attention_2",
        )
        input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
        generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
        self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-3:].tolist())
555
556

    # Copied from transformers.tests.models.llama.test_modeling_llama.LlamaModelTest.test_eager_matches_sdpa_generate with Llama->StableLm,saibo/llama-1B->stabilityai/stablelm-3b-4e1t
557
558
    # TODO: @Fxmarty
    @is_flaky(max_attempts=3, description="flaky on some models.")
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        max_new_tokens = 30

        tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")

        model_sdpa = StableLmForCausalLM.from_pretrained(
            "stabilityai/stablelm-3b-4e1t",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
        ).to(torch_device)

        self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

        model_eager = StableLmForCausalLM.from_pretrained(
            "stabilityai/stablelm-3b-4e1t",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            attn_implementation="eager",
        ).to(torch_device)

        self.assertTrue(model_eager.config._attn_implementation == "eager")

        for name, submodule in model_eager.named_modules():
            if "SdpaAttention" in submodule.__class__.__name__:
                raise ValueError("The eager model should not have SDPA attention layers")

        has_sdpa = False
        for name, submodule in model_sdpa.named_modules():
            if "SdpaAttention" in submodule.__class__.__name__:
                has_sdpa = True
                break
        if not has_sdpa:
            raise ValueError("The SDPA model should have SDPA attention layers")

        texts = [
            "hi here's a longer context, getting longer and",
            "Hello this is a very long sentence my friend, very long for real",
            "Today I am in Paris and",
        ]

        for padding_side in ["left", "right"]:
            tokenizer.padding_side = padding_side
            tokenizer.pad_token = tokenizer.eos_token

            inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device)

            res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
            res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)

            with self.subTest(f"{padding_side}"):
                torch.testing.assert_close(
                    res_eager,
                    res_sdpa,
                    msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}",
                )