test_modeling_pegasus.py 25.2 KB
Newer Older
1
2
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
Sylvain Gugger's avatar
Sylvain Gugger committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch PEGASUS model."""
Sylvain Gugger's avatar
Sylvain Gugger committed
16

17
import tempfile
18
19
import unittest

20
from transformers import PegasusConfig, is_torch_available
21
22
23
24
25
26
27
28
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    require_torch_fp16,
    slow,
    torch_device,
)
29
from transformers.utils import cached_property
30

31
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
32
33
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
34
from ...test_pipeline_mixin import PipelineTesterMixin
35
from ..mbart.test_modeling_mbart import AbstractSeq2SeqIntegrationTest
36
37
38


if is_torch_available():
39
40
    import torch

41
    from transformers import AutoModelForSeq2SeqLM, PegasusForConditionalGeneration, PegasusModel
42
    from transformers.models.pegasus.modeling_pegasus import PegasusDecoder, PegasusEncoder, PegasusForCausalLM
43
44


45
46
47
48
49
50
def prepare_pegasus_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
51
52
    head_mask=None,
    decoder_head_mask=None,
53
    cross_attn_head_mask=None,
54
55
56
57
58
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
59
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
60
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
61
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
62
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
63
64
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
65
66
67
68
69
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
70
71
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
72
        "cross_attn_head_mask": cross_attn_head_mask,
73
    }
74

75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
class PegasusModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

115
116
117
118
119
120
        # forcing a certain token to be generated, sets all other tokens to -inf
        # if however the token to be generated is already at -inf then it can lead token
        # `nan` values and thus break generation
        self.forced_bos_token_id = None
        self.forced_eos_token_id = None

121
122
123
124
125
126
127
128
129
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

130
131
132
133
        config = self.get_config()
        inputs_dict = prepare_pegasus_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def get_pipeline_config(self):
        return PegasusConfig(
            vocab_size=200,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=200,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
        )

152
153
    def get_config(self):
        return PegasusConfig(
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
168
169
            forced_bos_token_id=self.forced_bos_token_id,
            forced_eos_token_id=self.forced_eos_token_id,
170
171
172
        )

    def prepare_config_and_inputs_for_common(self):
173
174
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict
175

176
177
178
179
    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = PegasusModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
180
        head_mask = inputs_dict["head_mask"]
181

182
        # first forward pass
183
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
208
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = PegasusModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = PegasusEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = PegasusDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
244
class PegasusModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
245
246
    all_model_classes = (PegasusModel, PegasusForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (PegasusForConditionalGeneration,) if is_torch_available() else ()
247
248
249
250
251
252
    pipeline_model_mapping = (
        {
            "conversational": PegasusForConditionalGeneration,
            "feature-extraction": PegasusModel,
            "summarization": PegasusForConditionalGeneration,
            "text-generation": PegasusForCausalLM,
Yih-Dar's avatar
Yih-Dar committed
253
254
            "text2text-generation": PegasusForConditionalGeneration,
            "translation": PegasusForConditionalGeneration,
255
256
257
258
        }
        if is_torch_available()
        else {}
    )
259
    is_encoder_decoder = True
260
    fx_compatible = True
261
    test_resize_position_embeddings = True
262
263
    test_pruning = False
    test_missing_keys = False
264
265

    def setUp(self):
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        self.model_tester = PegasusModelTester(self)
        self.config_tester = ConfigTester(self, config_class=PegasusConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

290
    @require_torch_fp16
291
292
293
294
295
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = PegasusForConditionalGeneration(config).eval().to(torch_device)
296
        model.half()
297
298
299
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
340
341


342
@require_torch
343
344
@require_sentencepiece
@require_tokenizers
345
346
class PegasusXSUMIntegrationTest(AbstractSeq2SeqIntegrationTest):
    checkpoint_name = "google/pegasus-xsum"
347
348
349
350
351
    src_text = [
        """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
        """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning 'Oh I think you're nominated'", said Dappy."And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around."At the end of the day we're grateful to be where we are in our careers."If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a  re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" """,
    ]

352
    tgt_text = [
353
        "California's largest electricity provider has turned off power to hundreds of thousands of customers.",
Sam Shleifer's avatar
Sam Shleifer committed
354
        "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
355
356
357
358
359
360
361
    ]

    @cached_property
    def model(self):
        return AutoModelForSeq2SeqLM.from_pretrained(self.checkpoint_name).to(torch_device)

    @slow
362
    @require_torch_fp16
363
364
365
366
367
368
    def test_pegasus_xsum_summary(self):
        assert self.tokenizer.model_max_length == 512
        inputs = self.tokenizer(self.src_text, return_tensors="pt", truncation=True, max_length=512, padding=True).to(
            torch_device
        )
        assert inputs.input_ids.shape == (2, 421)
Sam Shleifer's avatar
Sam Shleifer committed
369
        translated_tokens = self.model.generate(**inputs, num_beams=2)
370
        decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
371
        assert self.tgt_text == decoded
372
373
374

        self.model.half()
        translated_tokens_fp16 = self.model.generate(**inputs, max_length=10)
375
376
377
378
379
        decoded_fp16 = self.tokenizer.batch_decode(translated_tokens_fp16, skip_special_tokens=True)
        assert decoded_fp16 == [
            "California's largest electricity provider has begun",
            "N-Dubz have revealed they were",
        ]
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396


class PegasusStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
397
        decoder_layers=2,
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        encoder_attention_heads=4,
        decoder_attention_heads=4,
        max_position_embeddings=30,
        is_encoder_decoder=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings
        self.is_encoder_decoder = is_encoder_decoder

        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = PegasusConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            encoder_attention_heads=self.encoder_attention_heads,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
            is_encoder_decoder=self.is_encoder_decoder,
        )

        return (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        )

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = PegasusDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        model = PegasusDecoder(config=config).to(torch_device).eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class PegasusStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (PegasusDecoder, PegasusForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (PegasusForCausalLM,) if is_torch_available() else ()
575
    test_resize_position_embeddings = True
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    test_pruning = False
    is_encoder_decoder = False

    def setUp(
        self,
    ):
        self.model_tester = PegasusStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=PegasusConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)

    def test_retain_grad_hidden_states_attentions(self):
        # decoder cannot keep gradients
        return