test_modeling_tf_deit.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the TensorFlow DeiT model."""
16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
21
22
23
24
25
26
27
28
29
import inspect
import unittest

import numpy as np

from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
30
from ...test_pipeline_mixin import PipelineTesterMixin
31
32
33
34
35
36
37
38
39
40
41


if is_tf_available():
    import tensorflow as tf

    from transformers import (
        TFDeiTForImageClassification,
        TFDeiTForImageClassificationWithTeacher,
        TFDeiTForMaskedImageModeling,
        TFDeiTModel,
    )
42
    from transformers.modeling_tf_utils import keras
43
44
45
46
47


if is_vision_available():
    from PIL import Image

48
    from transformers import DeiTImageProcessor
49
50
51
52
53
54
55
56
57
58
59
60
61


class TFDeiTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
62
        num_hidden_layers=2,
63
64
65
66
67
68
69
70
71
72
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
        encoder_stride=2,
73
        attn_implementation="eager",
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
        self.encoder_stride = encoder_stride
93
        self.attn_implementation = attn_implementation
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

        # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 2

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DeiTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
            encoder_stride=self.encoder_stride,
125
            attn_implementation=self.attn_implementation,
126
127
128
129
130
131
132
133
134
135
136
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = TFDeiTModel(config=config)
        result = model(pixel_values)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = TFDeiTForMaskedImageModeling(config=config)
        result = model(pixel_values)
        self.parent.assertEqual(
137
            result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
138
139
140
141
142
143
144
145
        )

        # test greyscale images
        config.num_channels = 1
        model = TFDeiTForMaskedImageModeling(config)

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
146
        self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = TFDeiTForImageClassification(config)
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

        # test greyscale images
        config.num_channels = 1
        model = TFDeiTForImageClassification(config)

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_tf
170
class TFDeiTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    """
    Here we also overwrite some of the tests of test_modeling_tf_common.py, as DeiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            TFDeiTModel,
            TFDeiTForImageClassification,
            TFDeiTForImageClassificationWithTeacher,
            TFDeiTForMaskedImageModeling,
        )
        if is_tf_available()
        else ()
    )
186
187
188
189
190
191
192
193
    pipeline_model_mapping = (
        {
            "feature-extraction": TFDeiTModel,
            "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
        }
        if is_tf_available()
        else {}
    )
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFDeiTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="DeiT does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
216
            self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer))
217
            x = model.get_output_embeddings()
218
            self.assertTrue(x is None or isinstance(x, keras.layers.Dense))
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    # special case for DeiTForImageClassificationWithTeacher model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
Matt's avatar
Matt committed
249
            if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call).parameters:
250
251
252
253
254
255
                del inputs_dict["labels"]

        return inputs_dict

    @slow
    def test_model_from_pretrained(self):
256
257
258
        model_name = "facebook/deit-base-distilled-patch16-224"
        model = TFDeiTModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
259
260
261
262
263
264
265
266
267
268
269
270


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_tf
@require_vision
class DeiTModelIntegrationTest(unittest.TestCase):
    @cached_property
271
    def default_image_processor(self):
272
        return (
273
            DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
274
275
276
277
278
279
280
281
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224")

282
        image_processor = self.default_image_processor
283
        image = prepare_img()
284
        inputs = image_processor(images=image, return_tensors="tf")
285
286
287
288
289
290
291
292
293
294
295

        # forward pass
        outputs = model(**inputs)

        # verify the logits
        expected_shape = tf.TensorShape((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = tf.constant([-1.0266, 0.1912, -1.2861])

        self.assertTrue(np.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))