test_finetune_trainer.py 8.53 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
import os
import sys
3
from pathlib import Path
Suraj Patil's avatar
Suraj Patil committed
4
5
from unittest.mock import patch

6
7
import pytest

8
9
from transformers import BertTokenizer, EncoderDecoderModel, is_torch_available
from transformers.file_utils import is_datasets_available
10
from transformers.testing_utils import TestCasePlus, slow
Sylvain Gugger's avatar
Sylvain Gugger committed
11
12
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
13

14
15
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
Suraj Patil's avatar
Suraj Patil committed
16
from .test_seq2seq_examples import MBART_TINY
17
18
from .utils import execute_async_std

Suraj Patil's avatar
Suraj Patil committed
19

20
21
if is_torch_available():
    import torch
Suraj Patil's avatar
Suraj Patil committed
22

23
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
24
25
26
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"


27
28
29
30
31
32
33
class TestFinetuneTrainer(TestCasePlus):
    def test_finetune_trainer(self):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
34

35
36
37
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
38
        output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10)
Suraj Patil's avatar
Suraj Patil committed
39

40
41
42
43
44
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
45

46
47
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
48

49
50
51
52
53
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
54

55
56
57
58
59
60
61
62
63
64
65
    @slow
    def test_finetune_bert2bert(self):
        if not is_datasets_available():
            return

        import datasets

        bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

        bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
66
        bert2bert.config.eos_token_id = tokenizer.sep_token_id
67
        bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
68
        bert2bert.config.max_length = 128
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

        train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
        val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")

        train_dataset = train_dataset.select(range(32))
        val_dataset = val_dataset.select(range(16))

        rouge = datasets.load_metric("rouge")

        batch_size = 4

        def _map_to_encoder_decoder_inputs(batch):
            # Tokenizer will automatically set [BOS] <text> [EOS]
            inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
            outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
            batch["input_ids"] = inputs.input_ids
            batch["attention_mask"] = inputs.attention_mask

            batch["decoder_input_ids"] = outputs.input_ids
            batch["labels"] = outputs.input_ids.copy()
            batch["labels"] = [
                [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
            ]
            batch["decoder_attention_mask"] = outputs.attention_mask

            assert all([len(x) == 512 for x in inputs.input_ids])
            assert all([len(x) == 128 for x in outputs.input_ids])

            return batch

        def _compute_metrics(pred):
            labels_ids = pred.label_ids
            pred_ids = pred.predictions

            # all unnecessary tokens are removed
            pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
            label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

            rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])[
                "rouge2"
            ].mid

            return {
                "rouge2_precision": round(rouge_output.precision, 4),
                "rouge2_recall": round(rouge_output.recall, 4),
                "rouge2_fmeasure": round(rouge_output.fmeasure, 4),
            }

        # map train dataset
        train_dataset = train_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        train_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        # same for validation dataset
        val_dataset = val_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        val_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        output_dir = self.get_auto_remove_tmp_dir()

        training_args = Seq2SeqTrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            predict_with_generate=True,
            evaluate_during_training=True,
            do_train=True,
            do_eval=True,
            warmup_steps=0,
            eval_steps=2,
            logging_steps=2,
        )

        # instantiate trainer
        trainer = Seq2SeqTrainer(
            model=bert2bert,
            args=training_args,
            compute_metrics=_compute_metrics,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
        )

        # start training
        trainer.train()

168
    def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
169
170

        # XXX: remove hardcoded path
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        data_dir = "examples/seq2seq/test_data/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        argv = f"""
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --learning_rate 3e-4
            --warmup_steps 8
            --evaluate_during_training
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        n_gpu = torch.cuda.device_count()
        if n_gpu > 1:

            path = Path(__file__).resolve()
            cur_path = path.parents[0]

            path = Path(__file__).resolve()
            examples_path = path.parents[1]
            src_path = f"{path.parents[2]}/src"
            env = os.environ.copy()
            env["PYTHONPATH"] = f"{examples_path}:{src_path}:{env.get('PYTHONPATH', '')}"

            distributed_args = (
                f"-m torch.distributed.launch --nproc_per_node={n_gpu} {cur_path}/finetune_trainer.py".split()
            )
            cmd = [sys.executable] + distributed_args + argv

            print("\nRunning: ", " ".join(cmd))

            result = execute_async_std(cmd, env=env, stdin=None, timeout=180, quiet=False, echo=False)

            assert result.stdout, "produced no output"
            if result.returncode > 0:
                pytest.fail(f"failed with returncode {result.returncode}")
        else:
            # 0 or 1 gpu
            testargs = ["finetune_trainer.py"] + argv
            with patch.object(sys, "argv", testargs):
                main()
234

235
        return output_dir