test_image_processing_yolos.py 15 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import pathlib
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available

26
27
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import YolosFeatureExtractor


class YolosFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
48
        size=None,
NielsRogge's avatar
NielsRogge committed
49
50
51
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
52
53
54
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
NielsRogge's avatar
NielsRogge committed
55
    ):
56
57
        # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
        size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
NielsRogge's avatar
NielsRogge committed
58
59
60
61
62
63
64
65
66
67
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
68
69
70
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
NielsRogge's avatar
NielsRogge committed
71
72
73
74
75
76
77
78

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
79
80
81
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
NielsRogge's avatar
NielsRogge committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
        This function computes the expected height and width when providing images to YolosFeatureExtractor,
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
96
97
                expected_height = int(self.size["shortest_edge"] * h / w)
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
98
            elif w > h:
99
100
                expected_height = self.size["shortest_edge"]
                expected_width = int(self.size["shortest_edge"] * w / h)
NielsRogge's avatar
NielsRogge committed
101
            else:
102
103
                expected_height = self.size["shortest_edge"]
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width


@require_torch
@require_vision
class YolosFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = YolosFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = YolosFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))

137
138
139
140
141
142
143
144
145
146
147
    def test_feat_extract_from_dict_with_kwargs(self):
        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict)
        self.assertEqual(feature_extractor.size, {"shortest_edge": 18, "longest_edge": 1333})
        self.assertEqual(feature_extractor.do_pad, True)

        feature_extractor = self.feature_extraction_class.from_dict(
            self.feat_extract_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
        )
        self.assertEqual(feature_extractor.size, {"shortest_edge": 42, "longest_edge": 84})
        self.assertEqual(feature_extractor.do_pad, False)

NielsRogge's avatar
NielsRogge committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_equivalence_padding(self):
        # Initialize feature_extractors
        feature_extractor_1 = self.feature_extraction_class(**self.feat_extract_dict)
252
        feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False, do_rescale=False)
NielsRogge's avatar
NielsRogge committed
253
254
255
256
257
258
259
260
261
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test whether the method "pad" and calling the feature extractor return the same tensors
        encoded_images_with_method = feature_extractor_1.pad(image_inputs, return_tensors="pt")
        encoded_images = feature_extractor_2(image_inputs, return_tensors="pt")

262
263
264
        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
        )
NielsRogge's avatar
NielsRogge committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    @slow
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        # encode them
        feature_extractor = YolosFeatureExtractor.from_pretrained("hustvl/yolos-small")
        encoding = feature_extractor(images=image, annotations=target, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
284
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
285
286
287

        # verify area
        expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
288
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
289
290
291
292
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
        expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
293
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
294
295
        # verify image_id
        expected_image_id = torch.tensor([39769])
296
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
297
298
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
299
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
300
301
        # verify class_labels
        expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
302
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
303
304
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
305
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
306
307
        # verify size
        expected_size = torch.tensor([800, 1066])
308
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
NielsRogge's avatar
NielsRogge committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

    @slow
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        # encode them
        feature_extractor = YolosFeatureExtractor(format="coco_panoptic")
        encoding = feature_extractor(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
330
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
331
332
333

        # verify area
        expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
334
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
335
336
337
338
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
        expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
339
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
340
341
        # verify image_id
        expected_image_id = torch.tensor([39769])
342
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
343
344
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
345
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
346
347
        # verify class_labels
        expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
348
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
349
        # verify masks
350
        expected_masks_sum = 822873
NielsRogge's avatar
NielsRogge committed
351
352
353
        self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
354
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
355
356
        # verify size
        expected_size = torch.tensor([800, 1066])
357
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))