run_bertology.py 18.3 KB
Newer Older
1
#!/usr/bin/env python3
thomwolf's avatar
thomwolf committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 CMU and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Bertology: this script shows how you can explore the internals of the models in the library to:
    - compute the entropy of the head attentions
    - compute the importance of each head
    - prune (remove) the low importance head.
    Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650)
    which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1
"""
22
23
import argparse
import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25
import os
from datetime import datetime, timedelta
26
27

import numpy as np
thomwolf's avatar
thomwolf committed
28
29
import torch
from torch.nn import CrossEntropyLoss, MSELoss
Aymeric Augustin's avatar
Aymeric Augustin committed
30
31
32
from torch.utils.data import DataLoader, SequentialSampler, Subset, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
thomwolf's avatar
thomwolf committed
33

Aymeric Augustin's avatar
Aymeric Augustin committed
34
from run_glue import ALL_MODELS, MODEL_CLASSES, load_and_cache_examples, set_seed
35
36
37
38
39
40
41
42
43
44
45
46
from transformers import (
    WEIGHTS_NAME,
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
)
Adrian Bauer's avatar
Adrian Bauer committed
47
48
49
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
thomwolf's avatar
thomwolf committed
50

Aymeric Augustin's avatar
Aymeric Augustin committed
51

52
53
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
54
55

def entropy(p):
thomwolf's avatar
thomwolf committed
56
    """ Compute the entropy of a probability distribution """
thomwolf's avatar
thomwolf committed
57
58
59
60
    plogp = p * torch.log(p)
    plogp[p == 0] = 0
    return -plogp.sum(dim=-1)

thomwolf's avatar
thomwolf committed
61

thomwolf's avatar
thomwolf committed
62
def print_2d_tensor(tensor):
thomwolf's avatar
thomwolf committed
63
    """ Print a 2D tensor """
thomwolf's avatar
thomwolf committed
64
65
    logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
    for row in range(len(tensor)):
thomwolf's avatar
thomwolf committed
66
67
68
69
        if tensor.dtype != torch.long:
            logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
        else:
            logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
thomwolf's avatar
thomwolf committed
70

thomwolf's avatar
thomwolf committed
71

72
73
74
def compute_heads_importance(
    args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None
):
thomwolf's avatar
thomwolf committed
75
76
    """ This method shows how to compute:
        - head attention entropy
thomwolf's avatar
thomwolf committed
77
78
        - head importance scores according to http://arxiv.org/abs/1905.10650
    """
thomwolf's avatar
thomwolf committed
79
80
81
82
    # Prepare our tensors
    n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
    head_importance = torch.zeros(n_layers, n_heads).to(args.device)
    attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
thomwolf's avatar
thomwolf committed
83
84
85
86

    if head_mask is None:
        head_mask = torch.ones(n_layers, n_heads).to(args.device)
    head_mask.requires_grad_(requires_grad=True)
thomwolf's avatar
thomwolf committed
87
88
89
90
    preds = None
    labels = None
    tot_tokens = 0.0

thomwolf's avatar
thomwolf committed
91
92
93
94
    for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
        batch = tuple(t.to(args.device) for t in batch)
        input_ids, input_mask, segment_ids, label_ids = batch

thomwolf's avatar
thomwolf committed
95
        # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
96
97
98
99
100
101
102
103
        outputs = model(
            input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask
        )
        loss, logits, all_attentions = (
            outputs[0],
            outputs[1],
            outputs[-1],
        )  # Loss and logits are the first, attention the last
thomwolf's avatar
thomwolf committed
104
        loss.backward()  # Backpropagate to populate the gradients in the head mask
thomwolf's avatar
thomwolf committed
105
106
107
108
109
110
111

        if compute_entropy:
            for layer, attn in enumerate(all_attentions):
                masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
                attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()

        if compute_importance:
thomwolf's avatar
thomwolf committed
112
            head_importance += head_mask.grad.abs().detach()
thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120

        # Also store our logits/labels if we want to compute metrics afterwards
        if preds is None:
            preds = logits.detach().cpu().numpy()
            labels = label_ids.detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126

        tot_tokens += input_mask.float().detach().sum().data

    # Normalize
    attn_entropy /= tot_tokens
    head_importance /= tot_tokens
thomwolf's avatar
thomwolf committed
127
128
129
    # Layerwise importance normalization
    if not args.dont_normalize_importance_by_layer:
        exponent = 2
130
        norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent)
thomwolf's avatar
thomwolf committed
131
132
133
        head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20

    if not args.dont_normalize_global_importance:
thomwolf's avatar
thomwolf committed
134
135
        head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())

thomwolf's avatar
thomwolf committed
136
    # Print/save matrices
137
138
    np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy())
    np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy())
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144
145

    logger.info("Attention entropies")
    print_2d_tensor(attn_entropy)
    logger.info("Head importance scores")
    print_2d_tensor(head_importance)
    logger.info("Head ranked by importance scores")
    head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
146
147
148
    head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(
        head_importance.numel(), device=args.device
    )
thomwolf's avatar
thomwolf committed
149
150
151
    head_ranks = head_ranks.view_as(head_importance)
    print_2d_tensor(head_ranks)

thomwolf's avatar
thomwolf committed
152
    return attn_entropy, head_importance, preds, labels
thomwolf's avatar
thomwolf committed
153

thomwolf's avatar
thomwolf committed
154

thomwolf's avatar
thomwolf committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def mask_heads(args, model, eval_dataloader):
    """ This method shows how to mask head (set some heads to zero), to test the effect on the network,
        based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
    """
    _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
    logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)

    new_head_mask = torch.ones_like(head_importance)
    num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))

    current_score = original_score
    while current_score >= original_score * args.masking_threshold:
169
        head_mask = new_head_mask.clone()  # save current head mask
thomwolf's avatar
thomwolf committed
170
        # heads from least important to most - keep only not-masked heads
171
        head_importance[head_mask == 0.0] = float("Inf")
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        current_heads_to_mask = head_importance.view(-1).sort()[1]

        if len(current_heads_to_mask) <= num_to_mask:
            break

        # mask heads
        current_heads_to_mask = current_heads_to_mask[:num_to_mask]
        logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
        new_head_mask = new_head_mask.view(-1)
        new_head_mask[current_heads_to_mask] = 0.0
        new_head_mask = new_head_mask.view_as(head_mask)
        print_2d_tensor(new_head_mask)

        # Compute metric and head importance again
186
187
188
        _, head_importance, preds, labels = compute_heads_importance(
            args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask
        )
thomwolf's avatar
thomwolf committed
189
190
        preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
        current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
191
192
193
194
195
196
        logger.info(
            "Masking: current score: %f, remaning heads %d (%.1f percents)",
            current_score,
            new_head_mask.sum(),
            new_head_mask.sum() / new_head_mask.numel() * 100,
        )
thomwolf's avatar
thomwolf committed
197
198
199

    logger.info("Final head mask")
    print_2d_tensor(head_mask)
200
    np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy())
thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
207
208
209
210
211

    return head_mask


def prune_heads(args, model, eval_dataloader, head_mask):
    """ This method shows how to prune head (remove heads weights) based on
        the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
    """
    # Try pruning and test time speedup
    # Pruning is like masking but we actually remove the masked weights
    before_time = datetime.now()
212
213
214
    _, _, preds, labels = compute_heads_importance(
        args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask
    )
thomwolf's avatar
thomwolf committed
215
216
217
218
219
220
221
222
223
224
225
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name]
    original_time = datetime.now() - before_time

    original_num_params = sum(p.numel() for p in model.parameters())
    heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
    assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
    model.prune_heads(heads_to_prune)
    pruned_num_params = sum(p.numel() for p in model.parameters())

    before_time = datetime.now()
226
227
228
    _, _, preds, labels = compute_heads_importance(
        args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None
    )
thomwolf's avatar
thomwolf committed
229
230
231
232
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name]
    new_time = datetime.now() - before_time

233
234
235
236
237
238
    logger.info(
        "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)",
        original_num_params,
        pruned_num_params,
        pruned_num_params / original_num_params * 100,
    )
thomwolf's avatar
thomwolf committed
239
    logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
240
    logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100)
thomwolf's avatar
thomwolf committed
241
242
243


def main():
244
    parser = argparse.ArgumentParser()
245
    # Required parameters
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
thomwolf's avatar
thomwolf committed
274

275
    # Other parameters
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name_or_path",
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name_or_path",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances."
    )
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )

    parser.add_argument(
        "--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers"
    )
    parser.add_argument(
        "--dont_normalize_global_importance",
        action="store_true",
        help="Don't normalize all importance scores between 0 and 1",
    )

    parser.add_argument(
        "--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy."
    )
    parser.add_argument(
        "--masking_threshold",
        default=0.9,
        type=float,
        help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).",
    )
    parser.add_argument(
        "--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step."
    )
    parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")

    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, sequences shorter padded.",
    )
thomwolf's avatar
thomwolf committed
334
335
    parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")

336
    parser.add_argument("--seed", type=int, default=42)
thomwolf's avatar
thomwolf committed
337
    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
338
339
340
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
341
342
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
343
344
345
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
346

thomwolf's avatar
thomwolf committed
347
348
349
350
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
351
    # Setup devices and distributed training
thomwolf's avatar
thomwolf committed
352
353
    if args.local_rank == -1 or args.no_cuda:
        args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
354
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
355
356
357
    else:
        torch.cuda.set_device(args.local_rank)
        args.device = torch.device("cuda", args.local_rank)
thomwolf's avatar
thomwolf committed
358
        args.n_gpu = 1
359
        torch.distributed.init_process_group(backend="nccl")  # Initializes the distributed backend
thomwolf's avatar
thomwolf committed
360

thomwolf's avatar
thomwolf committed
361
    # Setup logging
362
    logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
363
    logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
364

thomwolf's avatar
thomwolf committed
365
    # Set seeds
thomwolf's avatar
thomwolf committed
366
    set_seed(args)
thomwolf's avatar
thomwolf committed
367
368

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
369
370
371
372
373
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
374
    label_list = processor.get_labels()
thomwolf's avatar
thomwolf committed
375
    num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
376

thomwolf's avatar
thomwolf committed
377
    # Load pretrained model and tokenizer
thomwolf's avatar
thomwolf committed
378
    if args.local_rank not in [-1, 0]:
thomwolf's avatar
thomwolf committed
379
380
381
382
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = ""
    for key in MODEL_CLASSES:
tuvuumass's avatar
tuvuumass committed
383
        if key in args.model_name_or_path.lower():
thomwolf's avatar
thomwolf committed
384
385
386
            args.model_type = key  # take the first match in model types
            break
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        output_attentions=True,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
thomwolf's avatar
thomwolf committed
404

thomwolf's avatar
thomwolf committed
405
    if args.local_rank == 0:
thomwolf's avatar
thomwolf committed
406
407
408
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    # Distributed and parallel training
thomwolf's avatar
thomwolf committed
409
    model.to(args.device)
thomwolf's avatar
thomwolf committed
410
    if args.local_rank != -1:
411
412
413
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
414
415
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
416

thomwolf's avatar
thomwolf committed
417
    # Print/save training arguments
418
    torch.save(args, os.path.join(args.output_dir, "run_args.bin"))
thomwolf's avatar
thomwolf committed
419
    logger.info("Training/evaluation parameters %s", args)
thomwolf's avatar
thomwolf committed
420

thomwolf's avatar
thomwolf committed
421
422
    # Prepare dataset for the GLUE task
    eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
thomwolf's avatar
thomwolf committed
423
    if args.data_subset > 0:
thomwolf's avatar
thomwolf committed
424
        eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
thomwolf's avatar
thomwolf committed
425
426
427
428
    eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)

    # Compute head entropy and importance score
thomwolf's avatar
thomwolf committed
429
    compute_heads_importance(args, model, eval_dataloader)
thomwolf's avatar
thomwolf committed
430

thomwolf's avatar
thomwolf committed
431
432
    # Try head masking (set heads to zero until the score goes under a threshole)
    # and head pruning (remove masked heads and see the effect on the network)
thomwolf's avatar
thomwolf committed
433
    if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
thomwolf's avatar
thomwolf committed
434
435
        head_mask = mask_heads(args, model, eval_dataloader)
        prune_heads(args, model, eval_dataloader, head_mask)
thomwolf's avatar
thomwolf committed
436

thomwolf's avatar
thomwolf committed
437

438
if __name__ == "__main__":
thomwolf's avatar
thomwolf committed
439
    main()