test_modeling_whisper.py 103 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Whisper model. """

import copy
import inspect
import os
import tempfile
21
import time
22
23
import unittest

24
import numpy as np
Yih-Dar's avatar
Yih-Dar committed
25
import pytest
26

27
import transformers
28
from transformers import WhisperConfig
29
30
from transformers.testing_utils import (
    is_pt_flax_cross_test,
31
    require_flash_attn,
32
33
    require_torch,
    require_torch_fp16,
34
    require_torch_gpu,
35
36
37
38
    require_torchaudio,
    slow,
    torch_device,
)
39
from transformers.utils import cached_property, is_flax_available, is_torch_available
40
41
from transformers.utils.import_utils import is_datasets_available

42
from ...generation.test_utils import GenerationTesterMixin
43
44
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
45
from ...test_pipeline_mixin import PipelineTesterMixin
46
47
48
49
50
51
52
53
54
55
56


if is_datasets_available():
    import datasets
    from datasets import load_dataset

if is_torch_available():
    import torch

    from transformers import (
        WhisperFeatureExtractor,
57
        WhisperForAudioClassification,
58
        WhisperForCausalLM,
59
60
61
62
63
        WhisperForConditionalGeneration,
        WhisperModel,
        WhisperProcessor,
        set_seed,
    )
64
    from transformers.models.whisper.modeling_whisper import WhisperDecoder, WhisperEncoder, sinusoids
65

66
67
if is_flax_available():
    import jax.numpy as jnp
Sylvain Gugger's avatar
Sylvain Gugger committed
68

69
70
71
72
73
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

def prepare_whisper_inputs_dict(
    config,
    input_features,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
    cross_attn_head_mask=None,
):
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
    if head_mask is None:
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
    if decoder_head_mask is None:
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
    return {
        # "input_ids": input_features,
        "input_features": input_features,
        "decoder_input_ids": decoder_input_ids,
        "decoder_attention_mask": decoder_attention_mask,
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
    }


@require_torch
class WhisperModelTester:
    def __init__(
        self,
        parent,
109
        batch_size=2,
110
        seq_length=60,
111
112
        is_training=True,
        use_labels=False,
113
        vocab_size=200,
114
115
116
117
118
119
120
121
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        input_channels=1,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
122
        max_source_positions=30,
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        max_target_positions=40,
        bos_token_id=98,
        eos_token_id=98,
        pad_token_id=0,
        num_mel_bins=80,
        decoder_start_token_id=85,
        num_conv_layers=1,
        suppress_tokens=None,
        begin_suppress_tokens=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.input_channels = input_channels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.num_mel_bins = num_mel_bins
        self.max_position_embeddings = max_position_embeddings
        self.max_source_positions = max_source_positions
        self.max_target_positions = max_target_positions
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.num_conv_layers = num_conv_layers
        self.suppress_tokens = suppress_tokens
        self.begin_suppress_tokens = begin_suppress_tokens

    def prepare_config_and_inputs(self):
        input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length], self.vocab_size)

        decoder_input_ids = torch.tensor(self.batch_size * [[self.decoder_start_token_id]], device=torch_device)

        config = self.get_config()
        inputs_dict = prepare_whisper_inputs_dict(
            config,
            attention_mask=None,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
        )
        return config, inputs_dict

    def get_config(self):
        return WhisperConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            input_channels=self.input_channels,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            max_source_positions=self.max_source_positions,
            max_target_positions=self.max_target_positions,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_ffn_dim=self.hidden_size,
            encoder_ffn_dim=self.hidden_size,
            decoder_start_token_id=self.decoder_start_token_id,
            suppress_tokens=self.suppress_tokens,
            begin_suppress_tokens=self.begin_suppress_tokens,
        )

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_subsampled_output_lengths(self, input_lengths):
        """
        Computes the output length of the convolutional layers
        """

        for i in range(self.num_conv_layers):
            input_lengths = (input_lengths - 1) // 2 + 1

        return input_lengths

210
    def create_and_check_model_forward(self, config, inputs_dict, freeze_encoder=False):
211
212
        model = WhisperModel(config=config).to(torch_device).eval()

213
214
215
        if freeze_encoder:
            model.freeze_encoder()

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        input_features = inputs_dict["input_features"]
        decoder_input_ids = inputs_dict["decoder_input_ids"]

        # first forward pass
        last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state

        self.parent.assertTrue(last_hidden_state.shape, (13, 7, 16))

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = WhisperModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["decoder_input_ids"]
        attention_mask = inputs_dict["decoder_attention_mask"]

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = WhisperModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = WhisperEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_features"])[0]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = WhisperDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
288
class WhisperModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
289
290
    all_model_classes = (WhisperModel, WhisperForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (WhisperForConditionalGeneration,) if is_torch_available() else ()
291
    pipeline_model_mapping = (
Yih-Dar's avatar
Yih-Dar committed
292
293
294
295
296
        {
            "audio-classification": WhisperForAudioClassification,
            "automatic-speech-recognition": WhisperForConditionalGeneration,
            "feature-extraction": WhisperModel,
        }
297
298
299
        if is_torch_available()
        else {}
    )
300
301
302
303
    is_encoder_decoder = True
    fx_compatible = False
    test_pruning = False
    test_missing_keys = False
Yih-Dar's avatar
Yih-Dar committed
304
    # Needs higher percentages after model tester's vocab_size is changed to 200 (PR #21222)
305
306
    # `0.5` is for `test_disk_offload` (which also works for `test_model_parallelism`)
    model_split_percents = [0.5, 0.8, 0.9]
307
308
309

    input_name = "input_features"

310
311
312
313
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
314
315
316
317
        if pipeline_test_casse_name in [
            "AutomaticSpeechRecognitionPipelineTests",
            "AudioClassificationPipelineTests",
        ]:
318
319
320
321
322
323
            # RuntimeError: The size of tensor a (1500) must match the size of tensor b (30) at non-singleton
            # dimension 1
            return True

        return False

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    def setUp(self):
        self.model_tester = WhisperModelTester(self)
        self.config_tester = ConfigTester(self, config_class=WhisperConfig)
        self.maxDiff = 3000

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_model_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_forward(*config_and_inputs)

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    def test_model_forward_with_frozen_encoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_forward(*config_and_inputs, freeze_encoder=True)

    def test_requires_grad_with_frozen_encoder(self):
        config = self.model_tester.get_config()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.freeze_encoder()

            try:
                encoder_grads = [param.requires_grad for param in model.encoder.parameters()]
                decoder_grads = [param.requires_grad for param in model.decoder.parameters()]
            except AttributeError:
                encoder_grads = [param.requires_grad for param in model.model.encoder.parameters()]
                decoder_grads = [param.requires_grad for param in model.model.decoder.parameters()]

            self.assertFalse(all(encoder_grads))
            self.assertTrue(all(decoder_grads))

366
367
368
369
370
371
372
373
374
375
376
377
378
379
    def test_requires_grad_encoder_embed_positions(self):
        config = self.model_tester.get_config()
        for model_class in self.all_model_classes:
            model = model_class(config)
            encoder = model.get_encoder()
            self.assertFalse(encoder.embed_positions.weight.requires_grad)

    def test_encoder_sinusoidal_embed_positions(self):
        config = self.model_tester.get_config()
        for model_class in self.all_model_classes:
            model = model_class(config)
            embeds = model.get_encoder().embed_positions.weight
            self.assertTrue(torch.allclose(embeds, sinusoids(*embeds.shape)))

380
381
382
383
384
385
386
387
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

388
    def _get_input_ids_and_config(self, batch_size=3):
389
390
391
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict[self.input_name]

392
393
        # cut to half length & take max batch_size=batch_size
        input_ids = input_ids[:batch_size, :, :]
394
395

        # generate max 3 tokens
396
        max_length = 4
397
398
399
400
401
402
403
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
            config.pad_token_id = config.eos_token_id

        return config, input_ids, None, max_length

    def test_inputs_embeds(self):
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            decoder_input_ids = inputs.pop("decoder_input_ids", None)
            inputs.pop("decoder_attention_mask", None)

            wte = model.get_input_embeddings()
            inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]
421
422
423
424
425
426
427
428

    # training is not supported yet
    def test_training(self):
        pass

    def test_training_gradient_checkpointing(self):
        pass

429
430
431
432
433
434
435
436
437
438
439
440
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

441
442
443
    def test_generate_with_head_masking(self):
        pass

444
    @require_torch_fp16
445
446
447
448
449
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        config.max_target_positions = 400
        input_features = input_dict["input_features"]
        model = WhisperForConditionalGeneration(config).eval().to(torch_device)
450
451
        input_features = input_features.half()
        model.half()
452
453
454
        model.generate(input_features)
        model.generate(input_features, num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    def test_generate_language(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_features = input_dict["input_features"]
        model = WhisperForConditionalGeneration(config).to(torch_device)
        # Hack to keep the test fast and not require downloading a model with a generation_config
        model.generation_config.__setattr__("lang_to_id", {"<|en|>": 1})
        model.generation_config.__setattr__("task_to_id", {"transcribe": 2})

        # test language code
        model.generate(input_features, language="en")
        # test tokenizer code
        model.generate(input_features, language="<|en|>")
        # test language name
        model.generate(input_features, language="English")

470
471
472
473
474
475
476
477
478
479
480
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = [
                "input_features",
481
                "attention_mask",
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
                "decoder_input_ids",
                "decoder_attention_mask",
            ]
            expected_arg_names.extend(
                ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
                else ["encoder_outputs"]
            )
            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
            else:
                seq_length = self.model_tester.seq_length

            subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length)

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [subsampled_seq_length, self.model_tester.hidden_size],
            )

            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)

                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", 1)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length)
            subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length)

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
            )
            out_len = len(outputs)

            correct_outlen = 5

            # loss is at first position
            if "labels" in inputs_dict:
                correct_outlen += 1  # loss is added to beginning
            if "past_key_values" in outputs:
                correct_outlen += 1  # past_key_values have been returned

            self.assertEqual(out_len, correct_outlen)

            # decoder attentions
            decoder_attentions = outputs.decoder_attentions
            self.assertIsInstance(decoder_attentions, (list, tuple))
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

            # cross attentions
            cross_attentions = outputs.cross_attentions
            self.assertIsInstance(cross_attentions, (list, tuple))
            self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(cross_attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    decoder_seq_length,
                    subsampled_encoder_key_length,
                ],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            added_hidden_states = 2
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
            )

    def test_resize_tokens_embeddings(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

            # make sure that decoder_input_ids are resized
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

    def test_generate_without_input_ids(self):
        pass

    @staticmethod
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
        encoder = model.get_encoder()
        encoder_outputs = encoder(
            input_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = input_ids[:, :, 0]
        input_ids = torch.zeros_like(input_ids[:, :1], dtype=torch.long) + torch.tensor(
            [model._get_decoder_start_token_id()], device=input_ids.device
        )
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, mel, seq_length = input_ids.shape
        subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length)
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        # encoder
        self._check_encoder_attention_for_generate(
            output.encoder_attentions, batch_size, config, subsampled_seq_length
        )
        # decoder
        self._check_attentions_for_generate(
            num_sequences_in_output,
            output.decoder_attentions,
            min_length=1,
            max_length=output.sequences.shape[-1],
            config=config,
            use_cache=use_cache,
        )

        # Hidden States
        # encoder
        self._check_encoder_hidden_states_for_generate(
            output.encoder_hidden_states, batch_size, config, subsampled_seq_length
        )

        # decoder
        self._check_hidden_states_for_generate(
            num_sequences_in_output,
            output.decoder_hidden_states,
            min_length=1,
            max_length=output.sequences.shape[-1],
            config=config,
            use_cache=use_cache,
        )

802
803
    @require_flash_attn
    @require_torch_gpu
Yih-Dar's avatar
Yih-Dar committed
804
    @pytest.mark.flash_attn_test
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
    @slow
    def test_flash_attn_2_inference(self):
        import torch

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, use_flash_attention_2=True
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, use_flash_attention_2=False
                )
                model.to(torch_device)

                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)

                logits = outputs.decoder_hidden_states[-1]
                logits_fa = outputs_fa.decoder_hidden_states[-1]

                # whisper FA2 needs very high tolerance
                assert torch.allclose(logits_fa, logits, atol=4e-1)

                # check with inference + dropout
                model.train()
                _ = model_fa(dummy_input, decoder_input_ids=decoder_input_ids)

    @require_flash_attn
    @require_torch_gpu
Yih-Dar's avatar
Yih-Dar committed
849
    @pytest.mark.flash_attn_test
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
    @slow
    def test_flash_attn_2_inference_padding_right(self):
        import torch

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=True
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=False)
                model.to(torch_device)

                dummy_input = inputs_dict[model.main_input_name][:1]
                dummy_input = dummy_input.to(torch.float16)

                decoder_input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=dummy_input.device, dtype=torch.long)
                decoder_attention_mask = torch.tensor(
                    [[0, 0, 0, 1, 1, 1]], device=dummy_input.device, dtype=torch.long
                )

                outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)

                logits = outputs.decoder_hidden_states[-1]
                logits_fa = outputs_fa.decoder_hidden_states[-1]

                # whisper FA2 needs very high tolerance
                assert torch.allclose(logits_fa, logits, atol=4e-1)

                other_inputs = {
                    "decoder_input_ids": decoder_input_ids,
                    "decoder_attention_mask": decoder_attention_mask,
                    "output_hidden_states": True,
                }

                outputs = model(dummy_input, **other_inputs)
                outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = outputs.decoder_hidden_states[-1]
                logits_fa = outputs_fa.decoder_hidden_states[-1]

                # whisper FA2 needs very high tolerance
                assert torch.allclose(logits_fa[:, -2:], logits[:, -2:], atol=4e-1)

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class)

            try:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                input_features = inputs["input_features"]
                decoder_input_ids = inputs["decoder_input_ids"]
                decoder_attention_mask = inputs["decoder_attention_mask"]
Yih-Dar's avatar
Yih-Dar committed
920
921
922
923
924
925
926
927
928
929
930
                # prepare `attention_mask` with shape (batch_size, sequence_length)
                attention_mask = torch.ones(
                    input_features.shape[0],
                    input_features.shape[-1],
                    device=input_features.device,
                    dtype=input_features.dtype,
                )
                traced_model = torch.jit.trace(
                    model, (input_features, attention_mask, decoder_input_ids, decoder_attention_mask)
                )

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

956
957
958
959
960
961
962
963
964
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

965
966
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

967
968
969
970
971
972
973
974
975
976
977
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

978
979
980
981
982
983
984
985
            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

986
987
988
989
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=5e-5, name="outputs", attributes=None):
        # We override with a slightly higher tol value, as test recently became flaky
        super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)

990
991
992
993
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=5e-5, name="outputs", attributes=None):
        # We override with a slightly higher tol value, as test recently became flaky
        super().check_pt_flax_outputs(fx_outputs, pt_outputs, model_class, tol, name, attributes)

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        init_shape = (1,) + inputs_dict["input_features"].shape[1:]

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                # load Flax class
                fx_model = fx_model_class(config, input_shape=init_shape, dtype=jnp.float32)

                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
1037
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                # send pytorch model to the correct device
                pt_model.to(torch_device)

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, input_shape=init_shape, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        init_shape = (1,) + inputs_dict["input_features"].shape[1:]

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                # load Flax class
                fx_model = fx_model_class(config, input_shape=init_shape, dtype=jnp.float32)

                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
1110
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
    def test_mask_feature_prob(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.mask_feature_prob = 0.2
        config.mask_feature_length = 2

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.train()

            # forward pass
            encoder_last_hidden_state = model(**input_dict).encoder_last_hidden_state
            self.assertTrue(encoder_last_hidden_state.shape, (13, 30, 16))

    def test_mask_time_prob(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.mask_time_prob = 0.2
        config.mask_time_length = 2

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.train()

            # forward pass
            encoder_last_hidden_state = model(**input_dict).encoder_last_hidden_state
            self.assertTrue(encoder_last_hidden_state.shape, (13, 30, 16))

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
    def test_generate_with_prompt_ids_and_task_and_language(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = WhisperForConditionalGeneration(config).eval().to(torch_device)
        input_features = input_dict["input_features"]
        prompt_ids = np.arange(5)
        language = "<|de|>"
        task = "translate"
        lang_id = 6
        task_id = 7
        model.generation_config.__setattr__("lang_to_id", {language: lang_id})
        model.generation_config.__setattr__("task_to_id", {task: task_id})

        output = model.generate(input_features, max_new_tokens=5, task=task, language=language, prompt_ids=prompt_ids)

        expected_output_start = [
            *prompt_ids.tolist(),
            model.generation_config.decoder_start_token_id,
            lang_id,
            task_id,
        ]
        for row in output.tolist():
            self.assertListEqual(row[: len(expected_output_start)], expected_output_start)

    def test_generate_with_prompt_ids_and_forced_decoder_ids(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = WhisperForConditionalGeneration(config).eval().to(torch_device)
        input_features = input_dict["input_features"]
        prompt_ids = np.asarray(range(5))
        forced_decoder_ids = [(1, 6), (2, 7), (3, 8)]

        output = model.generate(
            input_features, max_new_tokens=5, forced_decoder_ids=forced_decoder_ids, prompt_ids=prompt_ids
        )

        expected_output_start = [
            *prompt_ids.tolist(),
            model.generation_config.decoder_start_token_id,
            *[token for _rank, token in forced_decoder_ids],
        ]
        for row in output.tolist():
            self.assertListEqual(row[: len(expected_output_start)], expected_output_start)

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    def test_generate_with_prompt_ids_max_length(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.max_target_positions = 5

        model = WhisperForConditionalGeneration(config).eval().to(torch_device)
        input_features = input_dict["input_features"]
        prompt_ids = np.asarray(range(4))
        sliced_prompt_ids = prompt_ids[1:]
        sliced_prompt_ids = sliced_prompt_ids[-config.max_target_positions // 2 - 1 :]
        max_new_tokens = 5

        with self.assertRaisesRegex(
            ValueError,
            f"The length of the sliced `prompt_ids` is {len(sliced_prompt_ids)}, and the `max_new_tokens` "
            f"{max_new_tokens}. Thus, the combined length of the sliced `prompt_ids` and `max_new_tokens` is: "
            f"{len(sliced_prompt_ids) + max_new_tokens}. This exceeds the `max_target_positions` of the Whisper model: "
            f"{config.max_target_positions}. You should either reduce the length of your prompt, or reduce the "
            f"value of `max_new_tokens`, so that their combined length is less that {config.max_target_positions}.",
        ):
            model.generate(input_features, max_new_tokens=max_new_tokens, prompt_ids=prompt_ids)

        model.generate(input_features, max_new_tokens=1, prompt_ids=prompt_ids)

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

@require_torch
@require_torchaudio
class WhisperModelIntegrationTests(unittest.TestCase):
    @cached_property
    def default_processor(self):
        return WhisperProcessor.from_pretrained("openai/whisper-base")

    def _load_datasamples(self, num_samples):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

    @slow
    def test_tiny_logits_librispeech(self):
        torch_device = "cpu"
        set_seed(0)
        model = WhisperModel.from_pretrained("openai/whisper-tiny")
        model.to(torch_device)
        input_speech = self._load_datasamples(1)
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="pt").input_features

        with torch.no_grad():
            logits = model(
                input_features,
                decoder_input_ids=torch.tensor([[50258, 50259, 50359]]),
                output_hidden_states=False,
                output_attentions=False,
                return_dict=False,
                use_cache=False,
            )

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                2.9892, -6.7607, 5.7348, 3.6096, 0.2152, -5.7321, 4.8855, -1.6407,
                0.2823, -1.5718, 10.4269, 3.4427, 0.0219, -8.0612, 3.4784, 8.4246,
                4.0575, -2.2864, 11.1084, 0.9963, 0.9884, -8.5154, -3.5469, -9.3713,
                0.9786, 3.5435, 7.4850, -5.2579, -1.4366, 10.4841
            ]
        )
        # fmt: on
        self.assertTrue(torch.allclose(logits[0][0, 0, :30].cpu(), EXPECTED_LOGITS, atol=1e-4))

        # fmt: off
        EXPECTED_GENERATION = torch.tensor(
            [
                -1.4651, -2.6944, 2.7821, 2.3793, 4.0738, 0.0188, -3.3203, 1.9836,
                0.0520, 0.7095, 1.1063, 0.2952, -3.6786, -0.5249, 0.3105, 4.7691,
                1.1562, 1.3046, 0.5810, -0.3624, 1.7006, 1.3424, 0.9817, 2.1958,
                1.8775, -5.7046, -0.7679, 4.0113, 2.6848, 2.8609
            ]
        )
        # fmt: on

        head_logits = logits[0] @ model.decoder.embed_tokens.weight.T
        self.assertTrue(torch.allclose(head_logits[0, 0, :30].cpu(), EXPECTED_GENERATION, atol=1e-4))

    @slow
    def test_small_en_logits_librispeech(self):
        set_seed(0)
        torch_device = "cpu"
        model = WhisperModel.from_pretrained("openai/whisper-small.en")
        model.to(torch_device)

        input_speech = self._load_datasamples(1)

        feaure_extractor = WhisperFeatureExtractor()
        input_features = feaure_extractor(input_speech, return_tensors="pt").input_features.to(torch_device)

        logits = model(
            input_features,
            decoder_input_ids=torch.tensor([[model.config.decoder_start_token_id]]),
            output_hidden_states=False,
            output_attentions=False,
            use_cache=False,
        )

        logits = logits.last_hidden_state @ model.decoder.embed_tokens.weight.T

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                -3.6784, -7.7211, -9.5070, -11.9286, -7.6489, -9.7026, -5.6188,
                -8.0104, -4.6238, -5.1833, -9.0485, -3.4079, -5.4874, -2.6935,
                -6.3479, -7.3398, -6.9558, -7.6867, -7.4748, -8.3463, -9.9781,
                -10.8389, -10.3105, -11.7201, -9.7261, -7.1590, -5.9272, -12.4509,
                -11.1146, -8.1918
            ]
        )
        # fmt: on
        self.assertTrue(torch.allclose(logits[0, 0, :30].cpu(), EXPECTED_LOGITS, atol=1e-4))

    @slow
    def test_large_logits_librispeech(self):
        set_seed(0)

        torch_device = "cpu"
        model = WhisperModel.from_pretrained("openai/whisper-large")
        model.to(torch_device)

        input_speech = self._load_datasamples(1)

        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
1347
1348
1349
        processed_inputs = processor(
            audio=input_speech, text="This part of the speech", add_special_tokens=False, return_tensors="pt"
        )
1350
        input_features = processed_inputs.input_features.to(torch_device)
1351
        decoder_input_ids = processed_inputs.labels.to(torch_device)
1352
1353
1354

        logits = model(
            input_features,
1355
            decoder_input_ids=decoder_input_ids,
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
            output_hidden_states=False,
            output_attentions=False,
            use_cache=False,
        )

        logits = logits.last_hidden_state @ model.decoder.embed_tokens.weight.T

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                2.1382, 0.9381, 4.4671, 3.5589, 2.4022, 3.8576, -0.6521, 2.5472,
                1.8301, 1.9957, 2.3432, 1.4678, 0.5459, 2.2597, 1.5179, 2.5357,
                1.1624, 0.6194, 1.0757, 1.8259, 2.4076, 1.6601, 2.3503, 1.3376,
                1.9891, 1.8635, 3.8931, 5.3699, 4.4772, 3.9184
            ]
        )
        # fmt: on

        self.assertTrue(torch.allclose(logits[0, 0, :30].cpu(), EXPECTED_LOGITS, atol=1e-4))

    @slow
    def test_tiny_en_generation(self):
        torch_device = "cpu"
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
        model.to(torch_device)
        model.config.decoder_start_token_id = 50257

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
            torch_device
        )

Arthur's avatar
Arthur committed
1390
        generated_ids = model.generate(input_features, num_beams=5, max_length=20)
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
        transcript = processor.tokenizer.batch_decode(generated_ids)[0]

        EXPECTED_TRANSCRIPT = (
            "<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle"
            " classes, and we are glad to"
        )
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_tiny_generation(self):
        torch_device = "cpu"
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        model.to(torch_device)

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
            torch_device
        )

Arthur's avatar
Arthur committed
1412
        generated_ids = model.generate(input_features, num_beams=5, max_length=20)
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
        transcript = processor.tokenizer.decode(generated_ids[0])

        EXPECTED_TRANSCRIPT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
            " classes and we are glad"
        )
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_large_generation(self):
        torch_device = "cpu"
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
        model.to(torch_device)

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
            torch_device
        )

        generated_ids = model.generate(
Arthur's avatar
Arthur committed
1435
            input_features, do_sample=False, max_length=20, language="<|en|>", task="transcribe"
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
        )
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = " Mr. Quilter is the apostle of the middle classes and we are glad"
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_large_generation_multilingual(self):
        torch_device = "cpu"
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
        model.to(torch_device)

        ds = load_dataset("common_voice", "ja", split="test", streaming=True)
        ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
        input_speech = next(iter(ds))["audio"]["array"]
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
            torch_device
        )

Arthur's avatar
Arthur committed
1457
1458
1459
        generated_ids = model.generate(
            input_features, do_sample=False, max_length=20, language="<|ja|>", task="transcribe"
        )
1460
1461
1462
1463
1464
1465
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = "木村さんに電話を貸してもらいました"
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

        generated_ids = model.generate(
Arthur's avatar
Arthur committed
1466
            input_features, do_sample=False, max_length=20, language="<|en|>", task="transcribe"
1467
1468
1469
        )
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

1470
        EXPECTED_TRANSCRIPT = " Kimura-san called me."
1471
1472
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

Arthur's avatar
Arthur committed
1473
1474
1475
        generated_ids = model.generate(
            input_features, do_sample=False, max_length=20, language="<|ja|>", task="translate"
        )
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = " I borrowed a phone from Kimura san"
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_large_batched_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")

        input_speech = self._load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features
Arthur's avatar
Arthur committed
1489
        generated_ids = model.generate(input_features, max_length=20, task="translate")
1490
1491
1492
1493

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
Arthur's avatar
Arthur committed
1494
1495
1496
1497
                [50258, 50259, 50358, 50363, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 293, 321, 366, 5404],
                [50258, 50259, 50358, 50363, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50257],
                [50258, 50259, 50358, 50363, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904],
                [50258, 50259, 50358, 50363, 634, 575, 12525, 22618, 1968, 6144, 35617, 20084, 1756, 311, 589, 307, 534, 10281, 934, 439]
1498
1499
1500
1501
1502
1503
1504
1505
            ]
        )
        # fmt: on

        self.assertTrue(torch.allclose(generated_ids, EXPECTED_LOGITS))

        # fmt: off
        EXPECTED_TRANSCRIPT = [
Arthur's avatar
Arthur committed
1506
            " Mr. Quilter is the apostle of the middle classes and we are glad",
1507
            " Nor is Mr. Quilter's manner less interesting than his matter.",
Arthur's avatar
Arthur committed
1508
1509
            " He tells us that at this festive season of the year, with Christmas and roast",
            " He has grave doubts whether Sir Frederick Layton's work is really Greek after all",
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
        ]
        # fmt: on

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_tiny_en_batched_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
        model.to(torch_device)

        input_speech = self._load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
            torch_device
        )
Arthur's avatar
Arthur committed
1527
        generated_ids = model.generate(input_features, max_length=20).to("cpu")
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                [50257, 50362, 1770, 13, 2264, 346, 353, 318, 262, 46329, 286, 262, 3504, 6097, 11, 290, 356, 389, 9675, 284],
                [50257, 50362, 5414, 318, 1770, 13, 2264, 346, 353, 338, 5642, 1342, 3499, 621, 465, 2300, 13, 50256, 50256, 50256],
                [50257, 50362, 679, 4952, 514, 326, 379, 428, 43856, 1622, 286, 262, 614, 11, 351, 6786, 290, 32595, 12023, 28236],
                [50257, 50362, 679, 468, 12296, 17188, 1771, 7361, 26113, 18881, 1122, 338, 670, 318, 1107, 8312, 706, 477, 290, 460]
            ]

        )
        # fmt: on

        self.assertTrue(torch.allclose(generated_ids, EXPECTED_LOGITS))

        # fmt: off
        EXPECTED_TRANSCRIPT = [
            " Mr. Quilter is the apostle of the middle classes, and we are glad to",
            " Nor is Mr. Quilter's manner less interesting than his matter.",
            " He tells us that at this festive season of the year, with Christmas and roast beef looming",
            " He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can",
        ]
        # fmt: on

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

    @slow
    def test_tiny_timestamp_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        model.to(torch_device)

        input_speech = np.concatenate(self._load_datasamples(4))
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
            torch_device
        )
Arthur's avatar
Arthur committed
1566
1567

        generated_ids = model.generate(input_features, max_length=448, return_timestamps=True).to("cpu")
1568

1569
        EXPECTED_OUTPUT = torch.tensor([50258, 50259, 50359, 50364, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 11, 293, 321, 366, 5404, 281, 2928, 702, 14943, 13, 50692, 50692, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50926, 50926, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256, 450, 10539, 51208, 51208, 949, 505, 11, 14138, 10117, 490, 3936, 293, 1080, 3542, 5160, 881, 26336, 281, 264, 1575, 13, 51552, 51552, 634, 575, 12525, 22618, 1968, 6144, 35617, 7354, 1292, 6, 589, 307, 534, 10281, 934, 439, 11, 293, 51836, 51836, 50257])  # fmt: skip
1570
1571
1572
1573
1574

        self.assertTrue(torch.allclose(generated_ids, EXPECTED_OUTPUT))

        EXPECTED_TRANSCRIPT = [
            {
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
                "text": (
                    " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is"
                    " Mr. Quilter's manner less interesting than his matter. He tells us that at this festive season"
                    " of the year, with Christmas and roast beef looming before us, similarly drawn from eating and"
                    " its results occur most readily to the mind. He has grave doubts whether Sir Frederick Latins'"
                    " work is really Greek after all, and"
                ),
                "offsets": [
                    {
                        "text": (
                            " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
                        ),
                        "timestamp": (0.0, 6.5600000000000005),
                    },
                    {
                        "text": " Nor is Mr. Quilter's manner less interesting than his matter.",
                        "timestamp": (6.5600000000000005, 11.24),
                    },
                    {
                        "text": (
                            " He tells us that at this festive season of the year, with Christmas and roast beef"
                            " looming"
                        ),
                        "timestamp": (11.24, 16.88),
                    },
                    {
                        "text": (
                            " before us, similarly drawn from eating and its results occur most readily to the mind."
                        ),
                        "timestamp": (16.88, 23.76),
                    },
                    {
                        "text": (
                            " He has grave doubts whether Sir Frederick Latins' work is really Greek after all, and"
                        ),
                        "timestamp": (23.76, 29.44),
                    },
                ],
1613
1614
1615
1616
1617
            }
        ]

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True, output_offsets=True)
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
1618

1619
1620
1621
1622
1623
1624
    @slow
    def test_tiny_token_timestamp_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        model.to(torch_device)
1625
        model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

        input_speech = self._load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
            torch_device
        )

        generate_outputs = model.generate(
            input_features, max_length=448, return_timestamps=True, return_token_timestamps=True
        )

        self.assertEqual(generate_outputs.sequences.shape, generate_outputs.token_timestamps.shape)

        # fmt: off
        EXPECTED_OUTPUT = torch.tensor([
            [ 0.0000, 0.0000, 0.0000, 0.0000, 0.4800, 0.8200, 0.9600, 1.1200, 1.1200, 1.2200, 1.5000, 1.7200, 2.0000, 2.3400, 2.5000, 2.6600, 3.1800, 3.5600, 3.6800, 3.8000, 4.1000, 4.3000, 4.5800, 4.9400, 5.3800, 12.4200, 12.8400, 26.9200, 26.9200, 26.9200, 26.9200, 26.9200, 26.9200, 26.9200, 26.9200, 26.9200, 26.9200, 26.9200, 26.9400, 26.9400, 26.9400, 26.9400, 29.8400 ],
            [ 0.0000, 0.0000, 0.0000, 0.0000, 0.5200, 0.9000, 1.1400, 1.4200, 1.5200, 1.6800, 1.6800, 1.8800, 2.1000, 2.2200, 2.6200, 3.1400, 3.5800, 3.9600, 4.4000, 17.3000, 17.3000, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7200, 26.7400, 26.7400, 26.7400, 26.7400, 26.7400, 26.7400, 28.0000 ],
            [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.7600, 1.0000, 1.4200, 1.8000, 1.9400, 2.1800, 2.5200, 3.0200, 3.3200, 3.5400, 3.9400, 4.5600, 4.9200, 5.2800, 5.5600, 5.9000, 6.1600, 6.3000, 6.4800, 6.4800, 6.6400, 7.8200, 7.9600, 8.2200, 8.6000, 8.9200, 9.2200, 9.5200, 9.7200, 10.0600, 10.5400, 10.8800, 11.2600, 11.5400, 11.7400, 12.0800, 15.6800, 15.6800],
            [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.7400, 1.0400, 1.3200, 1.6800, 2.1400, 2.4800, 2.7800, 3.0800, 3.1600, 3.4000, 3.6000, 4.0200, 4.2200, 4.8600, 5.2400, 5.7400, 6.3400, 6.6200, 6.7600, 6.7600, 6.8600, 7.2400, 7.4200, 7.6800, 7.9200, 8.4800, 8.7600, 9.2000, 9.2000, 9.4200, 15.8200, 15.8200, 29.6400, 29.6600, 29.6600, 29.6600, 29.6600, 29.7600]
        ])
        # fmt: on

        self.assertTrue(torch.allclose(generate_outputs.token_timestamps.to("cpu"), EXPECTED_OUTPUT))

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
    @slow
    def test_tiny_specaugment_librispeech(self):
        torch_device = "cpu"
        set_seed(0)
        # Apply SpecAugment
        model = WhisperModel.from_pretrained("openai/whisper-tiny", apply_spec_augment=True)
        # Set model to training mode to enable SpecAugment
        model.train()
        model.to(torch_device)
        input_speech = self._load_datasamples(1)
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="pt").input_features

        with torch.no_grad():
            logits = model(
                input_features,
                decoder_input_ids=torch.tensor([[50258, 50259, 50359]]),
                output_hidden_states=False,
                output_attentions=False,
                return_dict=False,
                use_cache=False,
            )

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                0.9362, -4.7105, 5.0879, 3.9642, 1.0013, -6.0096, 4.7285, -3.1847,
                -0.8648, 1.9631, 6.2653, 3.6936, 0.3575, -4.5818, 3.0564, 7.8712,
                2.9951, 0.6848, 9.9497, -2.6638, 1.1571, -6.8546, -1.4333, -7.7584,
                1.1200, 3.9030, 4.4655, -4.4919, -1.1703, 9.6241
            ]
        )
        # fmt: on
        self.assertTrue(torch.allclose(logits[0][0, 0, :30].cpu(), EXPECTED_LOGITS, atol=1e-4))
1683

1684
1685
1686
1687
1688
1689
    @slow
    def test_generate_with_prompt_ids(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        model.to(torch_device)
        input_speech = self._load_datasamples(4)[-1:]
1690
        input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device)
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

        output_without_prompt = model.generate(input_features)
        prompt_ids = processor.get_prompt_ids("Leighton")
        output_with_prompt = model.generate(input_features, prompt_ids=prompt_ids)

        expected_without_prompt = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can discover in it but little of Rocky Ithaca.<|endoftext|>"
        expected_with_prompt = "<|startofprev|> Leighton<|startoftranscript|><|en|><|transcribe|><|notimestamps|> He has grave doubts whether Sir Frederick Leighton's work is really Greek after all and can discover in it but little of Rocky Ithaca.<|endoftext|>"
        self.assertEqual(processor.decode(output_without_prompt[0]), expected_without_prompt)
        self.assertEqual(processor.decode(output_with_prompt[0]), expected_with_prompt)

    @slow
    def test_generate_with_prompt_ids_and_forced_decoder_ids(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        model.to(torch_device)
        input_speech = self._load_datasamples(1)
1707
        input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device)
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
        task = "translate"
        language = "de"
        expected_tokens = [f"<|{task}|>", f"<|{language}|>"]
        prompt = "test prompt"
        prompt_ids = processor.get_prompt_ids(prompt)

        output = model.generate(input_features, task=task, language=language, prompt_ids=prompt_ids)
        text = processor.decode(output[0])

        self.assertTrue(prompt in text)
1718
        self.assertTrue(all(token in text for token in expected_tokens))
1719
1720
1721
1722
1723
1724
1725

    @slow
    def test_generate_with_prompt_ids_and_no_non_prompt_forced_decoder_ids(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
        model.to(torch_device)
        input_speech = self._load_datasamples(1)
1726
        input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device)
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
        prompt = "test prompt"
        prompt_ids = processor.get_prompt_ids(prompt)

        model.generation_config.forced_decoder_ids = None
        model.config.forced_decoder_ids = None

        output = model.generate(input_features, prompt_ids=prompt_ids, return_timestamps=True)
        text = processor.decode(output[0])

        self.assertTrue(prompt in text)

1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
    @slow
    @require_torch_gpu
    def test_speculative_decoding_distil(self):
        torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
        model_id = "openai/whisper-large-v2"
        model = WhisperForConditionalGeneration.from_pretrained(
            model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
        )
        model.to(torch_device)

        processor = WhisperProcessor.from_pretrained(model_id)

        assistant_model_id = "distil-whisper/distil-large-v2"
        assistant_model = WhisperForCausalLM.from_pretrained(
            assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
        )
        assistant_model.to(torch_device)

        dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        sample = dataset[0]["audio"]

        input_features = processor(sample["array"], return_tensors="pt").input_features.to("cuda").to(torch.float16)

        # warm up assisted decoding
        _ = model.generate(input_features, assistant_model=assistant_model)
        # warm up non-assisted decoding
        _ = model.generate(input_features)

        # assisted decoding
        start_time = time.time()
        tokens = model.generate(input_features, assistant_model=assistant_model)
        total_time_assist = time.time() - start_time

        transcription_ass = processor.batch_decode(tokens, skip_special_tokens=True)

        # non-assisted decoding
        start_time = time.time()
        tokens = model.generate(input_features)
        total_time_non_assist = time.time() - start_time

        transcription_non_ass = processor.batch_decode(tokens, skip_special_tokens=True)

        assert transcription_ass == transcription_non_ass
        assert transcription_ass == [
            " Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel."
        ]
        assert total_time_non_assist > total_time_assist, "Make sure that assistant decoding is faster"

    @slow
    @require_torch_gpu
    def test_speculative_decoding_non_distil(self):
        torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
        model_id = "openai/whisper-large-v2"
        model = WhisperForConditionalGeneration.from_pretrained(
            model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
        )
        model.to(torch_device)

        processor = WhisperProcessor.from_pretrained(model_id)

        assistant_model_id = "openai/whisper-tiny"
        assistant_model = WhisperForConditionalGeneration.from_pretrained(
            assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
        )
        assistant_model.to(torch_device)

        dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        sample = dataset[0]["audio"]

        input_features = processor(sample["array"], return_tensors="pt").input_features.to("cuda").to(torch.float16)

        # warm up assisted decoding
        _ = model.generate(input_features, assistant_model=assistant_model)
        # warm up non-assisted decoding
        _ = model.generate(input_features)

        # assisted decoding
        start_time = time.time()
        tokens = model.generate(input_features, assistant_model=assistant_model)
        total_time_assist = time.time() - start_time

        transcription_ass = processor.batch_decode(tokens, skip_special_tokens=True)

        # non-assisted decoding
        start_time = time.time()
        tokens = model.generate(input_features)
        total_time_non_assist = time.time() - start_time

        transcription_non_ass = processor.batch_decode(tokens, skip_special_tokens=True)

        assert transcription_ass == transcription_non_ass
        assert transcription_ass == [
            " Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel."
        ]
        assert total_time_non_assist > total_time_assist, "Make sure that assistant decoding is faster"

1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845

def prepare_whisper_encoder_inputs_dict(config, input_features, head_mask=None):
    if head_mask is None:
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
    return {"input_features": input_features, "head_mask": head_mask}


@require_torch
class WhisperEncoderModelTester:
    def __init__(
        self,
        parent,
1846
        batch_size=2,
1847
        seq_length=60,
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
        is_training=True,
        use_labels=True,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        input_channels=1,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
1858
        max_source_positions=30,
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
        num_mel_bins=80,
        num_conv_layers=1,
        suppress_tokens=None,
        begin_suppress_tokens=None,
        classifier_proj_size=4,
        num_labels=2,
        is_encoder_decoder=False,
        is_decoder=False,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.input_channels = input_channels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.num_mel_bins = num_mel_bins
        self.max_position_embeddings = max_position_embeddings
        self.max_source_positions = max_source_positions
        self.num_conv_layers = num_conv_layers
        self.suppress_tokens = suppress_tokens
        self.begin_suppress_tokens = begin_suppress_tokens
        self.classifier_proj_size = classifier_proj_size
        self.num_labels = num_labels
        self.is_encoder_decoder = is_encoder_decoder
        self.is_decoder = is_decoder

    def get_config(self):
        return WhisperConfig(
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            input_channels=self.input_channels,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            max_source_positions=self.max_source_positions,
            decoder_ffn_dim=self.hidden_size,
            encoder_ffn_dim=self.hidden_size,
            suppress_tokens=self.suppress_tokens,
            begin_suppress_tokens=self.begin_suppress_tokens,
            classifier_proj_size=self.classifier_proj_size,
            num_labels=self.num_labels,
            is_encoder_decoder=self.is_encoder_decoder,
            is_decoder=self.is_decoder,
        )

    def prepare_config_and_inputs(self):
        input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length])

        config = self.get_config()
        inputs_dict = prepare_whisper_encoder_inputs_dict(
            config,
            input_features=input_features,
        )
        return config, inputs_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_subsampled_output_lengths(self, input_lengths):
        """
        Computes the output length of the convolutional layers
        """

        for i in range(self.num_conv_layers):
            input_lengths = (input_lengths - 1) // 2 + 1

        return input_lengths

    @property
    def encoder_seq_length(self):
        return self.get_subsampled_output_lengths(self.seq_length)

    def create_and_check_model_forward(self, config, inputs_dict, freeze_encoder=False):
        model = WhisperForAudioClassification(config=config).to(torch_device).eval()

        if freeze_encoder:
            model.freeze_encoder()

        input_features = inputs_dict["input_features"]

        # first forward pass
        last_hidden_state = model(input_features).logits

        self.parent.assertTrue(last_hidden_state.shape, (13, 2))


@require_torch
class WhisperEncoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (WhisperForAudioClassification,) if is_torch_available() else ()
    is_encoder_decoder = False
    fx_compatible = False
    test_pruning = False
    test_missing_keys = False

    input_name = "input_features"

    def setUp(self):
        self.model_tester = WhisperEncoderModelTester(self)
        self.config_tester = ConfigTester(self, config_class=WhisperConfig)
        self.maxDiff = 3000

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_features", "head_mask", "encoder_outputs"]
            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

1985
1986
1987
1988
1989
    @unittest.skip(reason="Some undefined behavior encountered with tiny versions of this model. Skip for now.")
    def test_cpu_offload(self):
        pass

    @unittest.skip(reason="Some undefined behavior encountered with tiny versions of this model. Skip for now.")
1990
1991
1992
1993
1994
    def test_disk_offload_bin(self):
        pass

    @unittest.skip(reason="Some undefined behavior encountered with tiny versions of this model. Skip for now.")
    def test_disk_offload_safetensors(self):
1995
1996
1997
1998
1999
2000
        pass

    @unittest.skip(reason="Some undefined behavior encountered with tiny versions of this model. Skip for now.")
    def test_model_parallelism(self):
        pass

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
    # input embeds is meaningless for an encoder-only acoustic model
    def test_inputs_embeds(self):
        pass

    # the equivalent test is passing the encoder outputs directly to the model
    def test_encoder_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            with torch.no_grad():
                outputs = model(**inputs)[0]

            input_ids = inputs["input_features"]
            del inputs["input_features"]

            encoder = model.encoder

            with torch.no_grad():
                inputs["encoder_outputs"] = encoder(input_ids)
                outputs_embeds = model(**inputs)[0]

            self.assertTrue((outputs_embeds == outputs).all())

2030
    # Needs to override as the encoder input embedding is a Conv1d
2031
    def test_model_common_attributes(self):
2032
2033
2034
2035
2036
2037
2038
2039
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Conv1d))
            model.set_input_embeddings(torch.nn.Conv1d(10, 10, 3))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Conv1d))
2040
2041
2042
2043

    # WhisperEncoder cannot resize token embeddings since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087

    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        init_shape = (1,) + inputs_dict["input_features"].shape[1:]

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                # load Flax class
                fx_model = fx_model_class(config, input_shape=init_shape, dtype=jnp.float32)

                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2088
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                # send pytorch model to the correct device
                pt_model.to(torch_device)

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, input_shape=init_shape, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        init_shape = (1,) + inputs_dict["input_features"].shape[1:]

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                # load Flax class
                fx_model = fx_model_class(config, input_shape=init_shape, dtype=jnp.float32)

                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2161
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439


class WhisperStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        is_training=True,
        use_labels=False,
        vocab_size=200,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        input_channels=1,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        max_source_positions=30,
        max_target_positions=40,
        bos_token_id=98,
        eos_token_id=98,
        pad_token_id=0,
        num_mel_bins=80,
        decoder_start_token_id=85,
        num_conv_layers=1,
        suppress_tokens=None,
        begin_suppress_tokens=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.input_channels = input_channels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.num_mel_bins = num_mel_bins
        self.max_position_embeddings = max_position_embeddings
        self.max_source_positions = max_source_positions
        self.max_target_positions = max_target_positions
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.num_conv_layers = num_conv_layers
        self.suppress_tokens = suppress_tokens
        self.begin_suppress_tokens = begin_suppress_tokens

    def prepare_config_and_inputs(self):
        input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length], self.vocab_size)

        decoder_input_ids = torch.tensor(
            self.batch_size * [[self.decoder_start_token_id, 3, 3, 7, 2]], device=torch_device
        )

        config = self.get_config()
        config.is_encoder_decoder = False
        inputs_dict = prepare_whisper_inputs_dict(
            config,
            attention_mask=None,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
        )

        inputs_dict.pop("input_features")
        inputs_dict.pop("head_mask")
        inputs_dict.pop("decoder_head_mask")
        inputs_dict.pop("cross_attn_head_mask")

        inputs_dict["attention_mask"] = inputs_dict.pop("decoder_attention_mask")
        inputs_dict["input_ids"] = inputs_dict.pop("decoder_input_ids")
        return config, inputs_dict

    @property
    def encoder_seq_length(self):
        return 5

    @property
    def seq_length(self):
        return 5

    def get_config(self):
        return WhisperConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            input_channels=self.input_channels,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            max_source_positions=self.max_source_positions,
            max_target_positions=self.max_target_positions,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_ffn_dim=self.hidden_size,
            encoder_ffn_dim=self.hidden_size,
            decoder_start_token_id=self.decoder_start_token_id,
            suppress_tokens=self.suppress_tokens,
            begin_suppress_tokens=self.begin_suppress_tokens,
        )

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()

        inputs_dict["input_ids"][:, -1] = self.pad_token_id

        return config, inputs_dict

    def prepare_config_and_inputs_for_decoder(self):
        config, input_features = self.prepare_config_and_inputs()
        input_ids = input_features["input_ids"]
        encoder_hidden_states = floats_tensor([self.batch_size, self.decoder_seq_length, self.hidden_size])

        return (config, input_ids, encoder_hidden_states)

    def create_and_check_decoder_model_past(self, config, input_ids):
        config.use_cache = True
        model = WhisperDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def create_and_check_decoder_model_attention_mask_past(self, config, input_ids):
        model = WhisperDecoder(config=config).to(torch_device).eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)


@require_torch
class WhisperStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (WhisperDecoder, WhisperForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (WhisperForCausalLM,) if is_torch_available() else ()
    fx_comptatible = False
    test_pruning = False
    is_encoder_decoder = False
    test_missing_keys = False

    def setUp(self):
        self.model_tester = WhisperStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=WhisperConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config, inputs_dict = config_and_inputs

        self.model_tester.create_and_check_decoder_model_past(config=config, input_ids=inputs_dict["input_ids"])

    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config, inputs_dict = config_and_inputs

        self.model_tester.create_and_check_decoder_model_attention_mask_past(
            config=config, input_ids=inputs_dict["input_ids"]
        )

    @unittest.skip("Generate needs input ids")
    def test_generate_without_input_ids(self):
        # generate only works with input ids for whisper
        pass

    @unittest.skip("Decoder can't keep attention grads")
    def test_retain_grad_hidden_states_attentions(self):
        # decoder cannot keep gradients
        return

    @unittest.skip("The model doesn't support fast init from base")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip("The model doesn't support left padding")  # and it's not used enough to be worth fixing :)
    def test_left_padding_compatibility(self):
        pass