"sgl-kernel/csrc/vscode:/vscode.git/clone" did not exist on "a1175a4e3a39a1ebaaa46c0634fb5182060b4fc7"
run_flax_glue.py 27.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 馃 Flax Transformers model for sequence classification on GLUE."""
Suraj Patil's avatar
Suraj Patil committed
17
import json
18
import logging
19
import math
20
21
import os
import random
22
import sys
23
import time
24
import warnings
25
from dataclasses import dataclass, field
26
from pathlib import Path
27
from typing import Any, Callable, Dict, Optional, Tuple
28
29

import datasets
30
import evaluate
31
32
import jax
import jax.numpy as jnp
33
import numpy as np
34
import optax
35
from datasets import load_dataset
36
from flax import struct, traverse_util
37
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
38
from flax.training import train_state
39
from flax.training.common_utils import get_metrics, onehot, shard
40
from huggingface_hub import Repository, create_repo
41
42
43
from tqdm import tqdm

import transformers
Suraj Patil's avatar
Suraj Patil committed
44
45
46
47
from transformers import (
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForSequenceClassification,
48
    HfArgumentParser,
Suraj Patil's avatar
Suraj Patil committed
49
    PretrainedConfig,
50
    TrainingArguments,
Suraj Patil's avatar
Suraj Patil committed
51
52
    is_tensorboard_available,
)
53
from transformers.utils import check_min_version, send_example_telemetry
54
55
56


logger = logging.getLogger(__name__)
57
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
58
check_min_version("4.32.0.dev0")
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Array = Any
Dataset = datasets.arrow_dataset.Dataset
PRNGKey = Any


task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}


78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_slow_tokenizer: Optional[bool] = field(
        default=False,
        metadata={"help": "If passed, will use a slow tokenizer (not backed by the 馃 Tokenizers library)."},
    )
    cache_dir: Optional[str] = field(
98
        default=None,
99
100
101
102
103
104
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
105
106
    token: str = field(
        default=None,
107
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
108
            "help": (
109
110
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
111
            )
112
        },
113
    )
114
115
116
117
118
119
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
120
121
122
123
124
125
126
127
128
129


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    task_name: Optional[str] = field(
        default=None, metadata={"help": f"The name of the glue task to train on. choices {list(task_to_keys.keys())}"}
130
    )
131
132
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
133
    )
134
135
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
136
    )
137
138
139
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
140
    )
141
142
143
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
144
    )
145
146
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
147
    )
148
149
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
150
    )
151
152
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
153
    )
154
    preprocessing_num_workers: Optional[int] = field(
155
        default=None,
156
        metadata={"help": "The number of processes to use for the preprocessing."},
157
    )
158
159
160
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162
163
164
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
165
        },
166
    )
167
168
169
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
173
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
174
        },
175
    )
176
177
178
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
179
180
181
182
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
183
184
185
186
187
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
188
189
190
191
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
192
        },
193
    )
194

195
196
197
198
199
200
201
202
203
204
205
    def __post_init__(self):
        if self.task_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower() if type(self.task_name) == str else self.task_name
206
207
208
209
210
211
212


def create_train_state(
    model: FlaxAutoModelForSequenceClassification,
    learning_rate_fn: Callable[[int], float],
    is_regression: bool,
    num_labels: int,
213
    weight_decay: float,
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
) -> train_state.TrainState:
    """Create initial training state."""

    class TrainState(train_state.TrainState):
        """Train state with an Optax optimizer.

        The two functions below differ depending on whether the task is classification
        or regression.

        Args:
          logits_fn: Applied to last layer to obtain the logits.
          loss_fn: Function to compute the loss.
        """

        logits_fn: Callable = struct.field(pytree_node=False)
        loss_fn: Callable = struct.field(pytree_node=False)

231
232
233
234
235
236
    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
237
238
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
239
240
241
242
243
244
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
245
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
246
247
248
249
        return traverse_util.unflatten_dict(flat_mask)

    tx = optax.adamw(
        learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    )

    if is_regression:

        def mse_loss(logits, labels):
            return jnp.mean((logits[..., 0] - labels) ** 2)

        return TrainState.create(
            apply_fn=model.__call__,
            params=model.params,
            tx=tx,
            logits_fn=lambda logits: logits[..., 0],
            loss_fn=mse_loss,
        )
    else:  # Classification.

        def cross_entropy_loss(logits, labels):
            xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels))
            return jnp.mean(xentropy)

        return TrainState.create(
            apply_fn=model.__call__,
            params=model.params,
            tx=tx,
            logits_fn=lambda logits: logits.argmax(-1),
            loss_fn=cross_entropy_loss,
        )


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int):
    """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices."""
    steps_per_epoch = len(dataset) // batch_size
    perms = jax.random.permutation(rng, len(dataset))
    perms = perms[: steps_per_epoch * batch_size]  # Skip incomplete batch.
    perms = perms.reshape((steps_per_epoch, batch_size))

    for perm in perms:
        batch = dataset[perm]
302
        batch = {k: np.array(v) for k, v in batch.items()}
303
304
305
306
307
308
        batch = shard(batch)

        yield batch


def glue_eval_data_collator(dataset: Dataset, batch_size: int):
309
310
311
312
313
314
315
316
    """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop."""
    batch_idx = np.arange(len(dataset))

    steps_per_epoch = math.ceil(len(dataset) / batch_size)
    batch_idx = np.array_split(batch_idx, steps_per_epoch)

    for idx in batch_idx:
        batch = dataset[idx]
317
        batch = {k: np.array(v) for k, v in batch.items()}
318
319
320
321
322

        yield batch


def main():
323
324
325
326
327
328
329
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
330

331
332
333
334
335
336
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

337
338
339
340
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue", model_args, data_args, framework="flax")

341
342
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
343
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
344
345
346
347
348
349
350
351
352
353
354
355
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

356
    # Handle the repository creation
357
    if training_args.push_to_hub:
358
359
360
361
362
363
364
365
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
        repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
        # Clone repo locally
        repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
366

367
368
369
370
371
372
373
374
375
376
377
378
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.

    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
379
    if data_args.task_name is not None:
380
        # Downloading and loading a dataset from the hub.
381
382
383
        raw_datasets = load_dataset(
            "glue",
            data_args.task_name,
384
            token=model_args.token,
385
        )
386
387
388
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
389
390
391
392
393
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1]
394
395
396
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
397
            token=model_args.token,
398
        )
399
400
401
402
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
403
404
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
423
    config = AutoConfig.from_pretrained(
424
425
426
        model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
427
        token=model_args.token,
428
429
    )
    tokenizer = AutoTokenizer.from_pretrained(
430
431
        model_args.model_name_or_path,
        use_fast=not model_args.use_slow_tokenizer,
432
        token=model_args.token,
433
434
435
436
    )
    model = FlaxAutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        config=config,
437
        token=model_args.token,
438
    )
439
440

    # Preprocessing the datasets
441
442
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
458
        and data_args.task_name is not None
459
460
461
462
        and not is_regression
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
463
        if sorted(label_name_to_id.keys()) == sorted(label_list):
464
465
466
467
468
469
470
471
            logger.info(
                f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
                "Using it!"
            )
            label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
472
                f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}."
473
474
                "\nIgnoring the model labels as a result.",
            )
475
    elif data_args.task_name is None:
476
477
478
479
480
481
482
        label_to_id = {v: i for i, v in enumerate(label_list)}

    def preprocess_function(examples):
        # Tokenize the texts
        texts = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
483
        result = tokenizer(*texts, padding="max_length", max_length=data_args.max_seq_length, truncation=True)
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

        if "label" in examples:
            if label_to_id is not None:
                # Map labels to IDs (not necessary for GLUE tasks)
                result["labels"] = [label_to_id[l] for l in examples["label"]]
            else:
                # In all cases, rename the column to labels because the model will expect that.
                result["labels"] = examples["label"]
        return result

    processed_datasets = raw_datasets.map(
        preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
    )

    train_dataset = processed_datasets["train"]
499
    eval_dataset = processed_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
500
501
502
503
504
505

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Define a summary writer
Suraj Patil's avatar
Suraj Patil committed
506
507
508
509
510
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

511
512
            summary_writer = SummaryWriter(training_args.output_dir)
            summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)})
Suraj Patil's avatar
Suraj Patil committed
513
514
515
516
517
518
519
520
521
522
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
523

524
    def write_train_metric(summary_writer, train_metrics, train_time, step):
525
526
527
528
529
530
531
532
        summary_writer.scalar("train_time", train_time, step)

        train_metrics = get_metrics(train_metrics)
        for key, vals in train_metrics.items():
            tag = f"train_{key}"
            for i, val in enumerate(vals):
                summary_writer.scalar(tag, val, step - len(vals) + i + 1)

533
    def write_eval_metric(summary_writer, eval_metrics, step):
534
535
536
        for metric_name, value in eval_metrics.items():
            summary_writer.scalar(f"eval_{metric_name}", value, step)

537
538
    num_epochs = int(training_args.num_train_epochs)
    rng = jax.random.PRNGKey(training_args.seed)
539
    dropout_rngs = jax.random.split(rng, jax.local_device_count())
540

541
542
543
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count()
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
544
545

    learning_rate_fn = create_learning_rate_fn(
546
547
548
549
550
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
551
552
    )

553
    state = create_train_state(
554
        model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=training_args.weight_decay
555
    )
556
557
558
559
560
561

    # define step functions
    def train_step(
        state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
    ) -> Tuple[train_state.TrainState, float]:
        """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
562
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
563
564
565
566
567
        targets = batch.pop("labels")

        def loss_fn(params):
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = state.loss_fn(logits, targets)
568
            return loss
569

570
571
        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
572
573
574
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)
        metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
575
        return new_state, metrics, new_dropout_rng
576
577
578
579
580
581
582
583
584

    p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))

    def eval_step(state, batch):
        logits = state.apply_fn(**batch, params=state.params, train=False)[0]
        return state.logits_fn(logits)

    p_eval_step = jax.pmap(eval_step, axis_name="batch")

585
    if data_args.task_name is not None:
586
        metric = evaluate.load("glue", data_args.task_name)
587
    else:
588
        metric = evaluate.load("accuracy")
589
590
591
592

    logger.info(f"===== Starting training ({num_epochs} epochs) =====")
    train_time = 0

593
594
595
    # make sure weights are replicated on each device
    state = replicate(state)

596
597
598
599
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_steps = steps_per_epoch * num_epochs
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (0/{num_epochs})", position=0)
    for epoch in epochs:
600
601
        train_start = time.time()
        train_metrics = []
602
603

        # Create sampling rng
604
        rng, input_rng = jax.random.split(rng)
605
606

        # train
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
        train_loader = glue_train_data_collator(input_rng, train_dataset, train_batch_size)
        for step, batch in enumerate(
            tqdm(
                train_loader,
                total=steps_per_epoch,
                desc="Training...",
                position=1,
            ),
        ):
            state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs)
            train_metrics.append(train_metric)

            cur_step = (epoch * steps_per_epoch) + (step + 1)

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
629
630
                    f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})"
631
632
633
634
635
636
637
638
639
                )

                train_metrics = []

            if (cur_step % training_args.eval_steps == 0 or cur_step % steps_per_epoch == 0) and cur_step > 0:
                # evaluate
                eval_loader = glue_eval_data_collator(eval_dataset, eval_batch_size)
                for batch in tqdm(
                    eval_loader,
640
                    total=math.ceil(len(eval_dataset) / eval_batch_size),
641
642
643
644
                    desc="Evaluating ...",
                    position=2,
                ):
                    labels = batch.pop("labels")
645
646
647
648
                    predictions = pad_shard_unpad(p_eval_step)(
                        state, batch, min_device_batch=per_device_eval_batch_size
                    )
                    metric.add_batch(predictions=np.array(predictions), references=labels)
649
650
651
652
653
654

                eval_metric = metric.compute()

                logger.info(f"Step... ({cur_step}/{total_steps} | Eval metrics: {eval_metric})")

                if has_tensorboard and jax.process_index() == 0:
655
                    write_eval_metric(summary_writer, eval_metric, cur_step)
656
657
658
659
660
661
662
663
664
665

            if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps):
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
            epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}"
666

Suraj Patil's avatar
Suraj Patil committed
667
668
669
    # save the eval metrics in json
    if jax.process_index() == 0:
        eval_metric = {f"eval_{metric_name}": value for metric_name, value in eval_metric.items()}
670
        path = os.path.join(training_args.output_dir, "eval_results.json")
Suraj Patil's avatar
Suraj Patil committed
671
672
673
        with open(path, "w") as f:
            json.dump(eval_metric, f, indent=4, sort_keys=True)

674
675
676

if __name__ == "__main__":
    main()