"docs/vscode:/vscode.git/clone" did not exist on "83fb311ef7776a278c6da4b4f18a625d1e11ecfa"
test_seq2seq_examples_multi_gpu.py 8.47 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# as due to their complexity multi-gpu tests could impact other tests, and to aid debug we have those in a separate module.

import logging
import os
import sys
from pathlib import Path

import pytest
import torch

from transformers.testing_utils import TestCasePlus, require_torch_multigpu

from .utils import load_json


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
    "max_tokens_per_batch": None,
    "supervise_forward": True,
    "normalize_hidden": True,
    "label_smoothing": 0.2,
    "eval_max_gen_length": None,
    "eval_beams": 1,
    "val_metric": "loss",
    "save_top_k": 1,
    "adafactor": True,
    "early_stopping_patience": 2,
    "logger_name": "default",
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
    "accumulate_grad_batches": 1,
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
    "lr_scheduler": "linear",
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
    "max_epochs": 1,
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)


ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"


stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(tmp_dir):
    for split in ["train", "val", "test"]:
        _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
        _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
    return tmp_dir


# XXX: a candidate for testing_utils (python>=3.6)
# https://stackoverflow.com/a/59041913/9201239
import asyncio  # noqa


class RunOutput:
    def __init__(self, returncode, stdout, stderr):
        self.returncode = returncode
        self.stdout = stdout
        self.stderr = stderr


async def _read_stream(stream, callback):
    while True:
        line = await stream.readline()
        if line:
            callback(line)
        else:
            break


async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> RunOutput:
    if echo:
        print(cmd)

    p = await asyncio.create_subprocess_exec(
        cmd[0],
        *cmd[1:],
        stdin=stdin,
        stdout=asyncio.subprocess.PIPE,
        stderr=asyncio.subprocess.PIPE,
        env=env,
    )
    out = []
    err = []

    def tee(line, sink, pipe, label=""):
        line = line.decode("utf-8").rstrip()
        sink.append(line)
        if not quiet:
            print(label, line, file=pipe)

    await asyncio.wait(
        [
            _read_stream(p.stdout, lambda l: tee(l, out, sys.stdout)),
            _read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:")),
        ],
        timeout=timeout,
    )

    # XXX: warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
    # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
    #
    # If it starts hanging, will need to switch s/wait/communicate/ - so perhaps for debug we will enable
    # `wait` as it's easier to see in real time, but for normal runs use `communicate`
    return RunOutput(await p.wait(), out, err)


def execute_async_std(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> RunOutput:
    loop = asyncio.get_event_loop()
    result = loop.run_until_complete(
        _stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo)
    )

    return result


class TestSummarizationDistillerMultiGPU(TestCasePlus):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

    @require_torch_multigpu
    def test_multigpu(self):

        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
            overwrite_output_dir=True,
            sortish_sampler=True,
        )
        self._test_distiller_cli_fork(updates, check_contents=False)

    def _test_distiller_cli_fork(self, updates, check_contents=True):
        default_updates = dict(
            label_smoothing=0.0,
            early_stopping_patience=-1,
            train_batch_size=1,
            eval_batch_size=2,
            max_epochs=2,
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
        output_dir = self.get_auto_remove_tmp_dir()
        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)

        def convert(k, v):
            if k in ["tgt_suffix", "server_ip", "server_port", "out", "n_tpu_cores"]:
                return ""
            if v is False or v is None:
                return ""
            if v is True:  # or len(str(v))==0:
                return f"--{k}"
            return f"--{k}={v}"

        cli_args = [x for x in (convert(k, v) for k, v in args_d.items()) if len(x)]
        cmd = [sys.executable, "./examples/seq2seq/distillation.py"] + cli_args

        print("\nRunning: ", " ".join(cmd))

        path = Path(__file__).resolve()
        examples_path = path.parents[1]
        src_path = f"{path.parents[2]}/src"
        env = os.environ.copy()
        env["PYTHONPATH"] = f"{examples_path}:{src_path}:{env.get('PYTHONPATH', '')}"

        result = execute_async_std(cmd, env=env, stdin=None, timeout=180, quiet=False, echo=False)

        assert result.stdout, "produced no output"
        if result.returncode > 0:
            pytest.fail(f"failed with returncode {result.returncode}")

        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        # get the following from the module, (we don't have access to `model` here)
        metrics_save_path = os.path.join(output_dir, "metrics.json")
        val_metric = "rouge2"

        metrics = load_json(metrics_save_path)
        # {'test': [{'test_avg_loss': 10.63731575012207, 'test_avg_rouge1': 0.0, 'test_avg_rouge2': 0.0, 'test_avg_rougeL': 0.0, 'test_avg_gen_time': 0.1822289228439331, 'test_avg_gen_len': 142.0, 'step_count': 1}]}
        print(metrics)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{val_metric}"], float)
        self.assertEqual(len(metrics["test"]), 1)
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) / 2 + 1)
        self.assertEqual(len(metrics["val"]), desired_n_evals)