test_tokenization_mbart.py 8.98 KB
Newer Older
1
import tempfile
2
3
import unittest

4
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
5
6
7
8
9
10
from transformers.testing_utils import (
    _sentencepiece_available,
    require_sentencepiece,
    require_tokenizers,
    require_torch,
)
11
12

from .test_tokenization_common import TokenizerTesterMixin
13
14
15
16


if _sentencepiece_available:
    from .test_tokenization_xlm_roberta import SAMPLE_VOCAB
17
18


19
if is_torch_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
20
    from transformers.models.bart.modeling_bart import shift_tokens_right
21

22
23
24
25
EN_CODE = 250004
RO_CODE = 250020


26
27
@require_sentencepiece
@require_tokenizers
28
29
class MBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = MBartTokenizer
30
31
    rust_tokenizer_class = MBartTokenizerFast
    test_rust_tokenizer = True
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
                #                                       ^ unk: 2 + 1 = 3                  unk: 2 + 1 = 3 ^
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )


@require_torch
118
119
@require_sentencepiece
@require_tokenizers
120
121
122
123
124
125
126
127
128
129
130
131
132
133
class MBartEnroIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/mbart-large-en-ro"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
        'Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.',
    ]
    expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE]

    @classmethod
    def setUpClass(cls):
134
        cls.tokenizer: MBartTokenizer = MBartTokenizer.from_pretrained(cls.checkpoint_name)
135
136
137
        cls.pad_token_id = 1
        return cls

138
139
140
141
142
    def check_language_codes(self):
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    def test_enro_tokenizer_batch_encode_plus(self):
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_enro_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
        generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_romanian)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_enro_tokenizer_truncation(self):
        src_text = ["this is gunna be a long sentence " * 20]
        assert isinstance(src_text[0], str)
        desired_max_length = 10
159
        ids = self.tokenizer.prepare_seq2seq_batch(
160
161
            src_text,
            max_length=desired_max_length,
162
163
164
165
        ).input_ids[0]
        self.assertEqual(ids[-2], 2)
        self.assertEqual(ids[-1], EN_CODE)
        self.assertEqual(len(ids), desired_max_length)
166
167
168
169
170
171
172
173
174
175

    def test_mask_token(self):
        self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250026, 250001])

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = MBartTokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

    # prepare_seq2seq_batch tests below

    @require_torch
    def test_batch_fairseq_parity(self):
        batch: BatchEncoding = self.tokenizer.prepare_seq2seq_batch(
            self.src_text, tgt_texts=self.tgt_text, return_tensors="pt"
        )
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)
        for k in batch:
            batch[k] = batch[k].tolist()
        # batch = {k: v.tolist() for k,v in batch.items()}
        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        # batch.decoder_inputs_ids[0][0] ==
        assert batch.input_ids[1][-2:] == [2, EN_CODE]
        assert batch.decoder_input_ids[1][0] == RO_CODE
        assert batch.decoder_input_ids[1][-1] == 2
        assert batch.labels[1][-2:] == [2, RO_CODE]

    @require_torch
    def test_enro_tokenizer_prepare_seq2seq_batch(self):
        batch = self.tokenizer.prepare_seq2seq_batch(
198
            self.src_text, tgt_texts=self.tgt_text, max_length=len(self.expected_src_tokens), return_tensors="pt"
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        )
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 14), batch.input_ids.shape)
        self.assertEqual((2, 14), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(self.expected_src_tokens, result)
        self.assertEqual(2, batch.decoder_input_ids[0, -1])  # EOS
        # Test that special tokens are reset
        self.assertEqual(self.tokenizer.prefix_tokens, [])
        self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE])

    def test_seq2seq_max_target_length(self):
        batch = self.tokenizer.prepare_seq2seq_batch(
214
            self.src_text, tgt_texts=self.tgt_text, max_length=3, max_target_length=10, return_tensors="pt"
215
216
217
218
219
        )
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 10)
        # max_target_length will default to max_length if not specified
220
221
222
        batch = self.tokenizer.prepare_seq2seq_batch(
            self.src_text, tgt_texts=self.tgt_text, max_length=3, return_tensors="pt"
        )
223
224
225
        batch["decoder_input_ids"] = shift_tokens_right(batch.labels, self.tokenizer.pad_token_id)
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 3)