test_pipelines_text_classification.py 3.19 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
23
from transformers import (
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    TextClassificationPipeline,
    pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
24

25
from .test_pipelines_common import ANY, PipelineTestCaseMeta
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

@is_pipeline_test
class TextClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING

    @slow
    @require_torch
    def test_pt_bert(self):
        text_classifier = pipeline("text-classification")

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
        outputs = text_classifier("This is bad !")
        self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
        outputs = text_classifier("Birds are a type of animal")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])

    @slow
    @require_tf
    def test_tf_bert(self):
        text_classifier = pipeline("text-classification", framework="tf")

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
        outputs = text_classifier("This is bad !")
        self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
        outputs = text_classifier("Birds are a type of animal")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])

    def run_pipeline_test(self, model, tokenizer):
        text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)

        # Small inputs because BartTokenizer tiny has maximum position embeddings = 22
        valid_inputs = "HuggingFace is in"
        outputs = text_classifier(valid_inputs)

        self.assertEqual(nested_simplify(outputs), [{"label": ANY(str), "score": ANY(float)}])
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())

        valid_inputs = ["HuggingFace is in ", "Paris is in France"]
        outputs = text_classifier(valid_inputs)
        self.assertEqual(
            nested_simplify(outputs),
            [{"label": ANY(str), "score": ANY(float)}, {"label": ANY(str), "score": ANY(float)}],
        )
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
        self.assertTrue(outputs[1]["label"] in model.config.id2label.values())