test_modeling_siglip.py 26.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
""" Testing suite for the PyTorch SigLIP model. """
NielsRogge's avatar
NielsRogge committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


import inspect
import os
import tempfile
import unittest

import numpy as np
import requests

from transformers import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
from transformers.testing_utils import (
    require_torch,
    require_vision,
    slow,
    torch_device,
)
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

50
    from transformers import SiglipForImageClassification, SiglipModel, SiglipTextModel, SiglipVisionModel
NielsRogge's avatar
NielsRogge committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    from transformers.models.siglip.modeling_siglip import SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import SiglipProcessor


class SiglipVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

        # in ViT, the seq length equals the number of patches
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches

    # Copied from tests.models.clip.test_modeling_clip.CLIPVisionModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return SiglipVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = SiglipVisionModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    # Copied from tests.models.clip.test_modeling_clip.CLIPVisionModelTester.prepare_config_and_inputs_for_common
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class SiglipVisionModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as SIGLIP does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (SiglipVisionModel,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = SiglipVisionModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=SiglipVisionConfig, has_text_modality=False, hidden_size=37
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="SIGLIP does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training(self):
        pass

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="SiglipVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="SiglipVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SiglipVisionModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


class SiglipTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return SiglipTextConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = SiglipTextModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTester.prepare_config_and_inputs_for_common
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class SiglipTextModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (SiglipTextModel,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_head_masking = False
    model_split_percents = [0.5, 0.8, 0.9]

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.setUp with CLIP->Siglip
    def setUp(self):
        self.model_tester = SiglipTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=SiglipTextConfig, hidden_size=37)

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_config
    def test_config(self):
        self.config_tester.run_common_tests()

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_model
    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_training
    def test_training(self):
        pass

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_training_gradient_checkpointing
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_training_gradient_checkpointing_use_reentrant
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_training_gradient_checkpointing_use_reentrant_false
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="Siglip does not use inputs_embeds")
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_inputs_embeds
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="SiglipTextModel has no base class and is not available in MODEL_MAPPING")
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_save_load_fast_init_from_base
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="SiglipTextModel has no base class and is not available in MODEL_MAPPING")
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_save_load_fast_init_to_base
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SiglipTextModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


class SiglipModelTester:
    def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

        self.parent = parent
        self.text_model_tester = SiglipTextModelTester(parent, **text_kwargs)
        self.vision_model_tester = SiglipVisionModelTester(parent, **vision_kwargs)
        self.is_training = is_training

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()

        config = self.get_config()

        return config, input_ids, attention_mask, pixel_values

    def get_config(self):
        return SiglipConfig.from_text_vision_configs(
            self.text_model_tester.get_config(),
            self.vision_model_tester.get_config(),
        )

    def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
        model = SiglipModel(config).to(torch_device).eval()
        with torch.no_grad():
            result = model(input_ids, pixel_values, attention_mask)
        self.parent.assertEqual(
            result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
        )
        self.parent.assertEqual(
            result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "return_loss": False,
        }
        return config, inputs_dict


@require_torch
class SiglipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (SiglipModel,) if is_torch_available() else ()
    pipeline_model_mapping = {"feature-extraction": SiglipModel} if is_torch_available() else {}
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.setUp with CLIP->Siglip
    def setUp(self):
        self.model_tester = SiglipModelTester(self)

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_model
    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="Hidden_states is tested in individual model tests")
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_hidden_states_output
    def test_hidden_states_output(self):
        pass

    @unittest.skip(reason="Inputs_embeds is tested in individual model tests")
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_inputs_embeds
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Retain_grad is tested in individual model tests")
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_retain_grad_hidden_states_attentions
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(reason="SiglipModel does not have input/output embeddings")
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_model_common_attributes
    def test_model_common_attributes(self):
        pass

    @unittest.skip(reason="SiglipModel does not support training")
    def test_training(self):
        pass

    @unittest.skip(reason="SiglipModel does not support training")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="SiglipModel does not support training")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="SiglipModel does not support training")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest._create_and_check_torchscript with CLIP->Siglip
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                pixel_values = inputs_dict["pixel_values"]  # Siglip needs pixel_values
                traced_model = torch.jit.trace(model, (input_ids, pixel_values))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_load_vision_text_config with CLIP->Siglip
    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save SiglipConfig and check if we can load SiglipVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = SiglipVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save SiglipConfig and check if we can load SiglipTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = SiglipTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())

    @slow
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_model_from_pretrained with CLIPModel->SiglipModel, CLIP->SIGLIP
    def test_model_from_pretrained(self):
        for model_name in SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SiglipModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
class SiglipForImageClassificationModelTester(SiglipModelTester):
    def __init__(self, parent):
        super().__init__(parent)
        self.batch_size = self.vision_model_tester.batch_size
        self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
        self.hidden_size = self.vision_model_tester.hidden_size
        self.seq_length = self.vision_model_tester.seq_length

    def prepare_config_and_inputs(self):
        _, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
        config = self.get_config()

        return config, pixel_values

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class SiglipForImageClassificationModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (SiglipForImageClassification,) if is_torch_available() else ()
    pipeline_model_mapping = {"image-classification": SiglipForImageClassification} if is_torch_available() else {}
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = SiglipForImageClassificationModelTester(self)

    @unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
    def test_model_common_attributes(self):
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass


NielsRogge's avatar
NielsRogge committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# We will verify our results on an image of cute cats
def prepare_img():
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    image = Image.open(requests.get(url, stream=True).raw)
    return image


@require_vision
@require_torch
class SiglipModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model_name = "google/siglip-base-patch16-224"
        model = SiglipModel.from_pretrained(model_name).to(torch_device)
        processor = SiglipProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=["a photo of 2 cats", "a photo of 2 dogs"], images=image, padding="max_length", return_tensors="pt"
        ).to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
            logits_per_image = outputs.logits_per_image
            logits_per_text = outputs.logits_per_text

        # verify the logits
        self.assertEqual(
            logits_per_image.shape,
            torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            logits_per_text.shape,
            torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )

        expected_logits = torch.tensor([[-0.7567, -10.3354]], device=torch_device)

        self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))

        # verify the probs
        probs = torch.sigmoid(logits_per_image)  # these are the probabilities
        expected_probs = torch.tensor([[3.1937e-01, 3.2463e-05]], device=torch_device)
        self.assertTrue(torch.allclose(probs, expected_probs, atol=1e-3))